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Abstract

Two facts distinctively separate exporter dynamics from firm dynamics. One is the strikingly
low survival rate of new entrants into export markets. The second is that new entrants survive
less than re-entrants. We argue that these two facts are critical to discipline exporter dynamics
models because many sources of firm heterogeneity (e.g. fixed costs) do not affect survival rates
when firms time their entry decision optimally. We extend a standard exporter dynamics model
by positing that firms experiment to resolve an uncertain component in foreign-market prof-
itability. We estimate the model using customs data from Peru. Despite its parsimony, having
only four relevant parameters, the model matches the survival profile of entrants and re-entrants.
It is also sufficiently rich to deliver predictions about many exporter dynamics facts highlighted
in the literature. Finally, we exploit variation across products and markets to provide additional
evidence supporting the model’s experimentation mechanism.
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1 Introduction

Countries worldwide dedicate considerable resources, mainly through export promotion agencies and
foreign embassy services, to helping firms establish a sustained presence in foreign markets. Under-
lying these policies is the view that increasing the number of domestic firms capable of achieving
sustained exports is vital to fostering aggregate export growth and economic development. Aca-
demic research supports this view, showing that a considerable fraction of aggregate exports is
accounted for by firms not exporting a few years earlier (Eaton et al., 2008; Freund and Pierola,
2010; Lederman et al., 2011). However, the effectiveness of these policy efforts may falter as the
dynamics of new exporters are still not well understood.

A growing body of literature has developed models of exporter dynamics by analogy to the
closed-economy firm-dynamics literature, emphasizing sunk cost and fixed costs, learning, customer
capital, and financial frictions.1 Two facts, however, distinctively separate exporter dynamics from
domestic firm dynamics. The first fact is that most new exports into a market do not become
established export businesses (Eaton et al. (2008) and Ruhl and Willis (2017), among others).
Indeed, in most cases, there is no export activity during the year after entry. The second fact,
documented in this paper, is that re-entrants survive more than first-time entrants. This fact is a
core feature of exporter dynamics given that re-entry in export markets is pervasive (Blum et al.,
2013; Arkolakis, 2016).

In this paper, we argue that survival moments that condition on the time of market entry, such
as these two facts, are particularly useful to discipline models of exporter dynamics. The reason
is that these moments are largely insensitive to time-invariant sources of heterogeneity that are
critical to match exporter cross-sectional facts, such as firm-specific demand or fixed costs in each
export market (Eaton et al., 2011). One core insight is that variation in these features - e.g. lower
fixed costs - would not make a firm more successful than another in a given market; instead, the
firm would start exporting earlier. Thus, by focusing on survival moments upon entry, we can learn
about the key dynamic components of the firm’s profitability process while allowing for arbitrary
heterogeneity in the static components of firm profitability. This remark extends to any extensive
margin moment - i.e. moments that depend on whether the firm actively exports at any point in
time - that condition solely on entry. By contrast, other exporter dynamics facts, such as export
growth or moments conditional on size, require taking a stand on the relationship between profits
and sales and the static components of firm profitability, respectively.

Guided by these two facts, we build a parsimonious model of exporter dynamics. The model
has two key ingredients. The first is a standard persistent process for firm profitability - see, e.g.
Arkolakis (2016) - with firms timing their entry into export markets optimally to maximize expected
profits. The second is uncertainty about foreign market profitability that can only be resolved by
actively exporting (Segura-Cayuela and Vilarrubia, 2008; Freund and Pierola, 2010; Albornoz et
al., 2012; Nguyen, 2012; Cebreros, 2016; Eaton et al., 2021). In the model, this takes the form of a

1See Alessandria et al. (2021a) for a survey.
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one-time profitability boost to export profits, whose size and timing are uncertain to the firm.
The model naturally delivers the two distinctive exporter dynamics facts mentioned above. First,

firms have an incentive to export at a loss in the hope of improving their profits, i.e. they go through
an “experimentation” phase. Many of them, however, receive only a small ex-post profitability boost
and thus exit. This explains the low survival rates. Second, since many re-entrants have already
resolved their uncertainty during their initial export spell, they do not re-enter to experiment.
Hence, their re-entry decision is more conservative and, as a result, they survive longer. We provide
evidence in support of the central mechanism of the model by exploiting hypothesized variation in
the degree of uncertainty by product and distance to the destination. The implied predictions of
uncertainty variation on survival probabilities are upheld by the data.

The model has the virtue of its simplicity. In particular, the theoretical solution of the dynamic
problem boils down to the implicit solution of one equation in one unknown. This simplicity facili-
tates a transparent understanding of the operating forces in the model and how they shape predicted
exporter behavior. The model, whose parameters are estimated by simulated method of moments
(SMM) using only the two distinctive exporter survival facts, does an excellent job explaining a
class of extensive-margin moments - mostly related to survival and re-entry patterns. Another
virtue of the model is its modularity. The model can easily accommodate alternative assumptions
to study other moments related to exporter behavior while retaining the core constitutive elements
of behavior on the extensive margin. Perhaps surprisingly, we show that even under the restrictive
assumptions of CES demand and homogeneity in the time-invariant components of profitability
(i.e. demand shifters and fixed costs), the model does a reasonable job explaining facts related to
export sales growth as well as survival and growth conditional on size. The margins of mismatch
are informative about additional model features that could help improve the model’s performance
regarding these facts.

We model a stylized uncertainty and experimentation mechanism embedded in a theoretical
framework with otherwise standard elements. A firm is initially inexperienced in a given export
market, with gross profits determined by an idiosyncratic time-varying component that follows a
geometric Brownian motion (GBM) and a constant and idiosyncratic market-specific component.
The evolution of gross profits is independent across export markets. Operation in a market requires
paying a continuous, constant, and idiosyncratic fixed cost. Firms can enter and exit the market
freely, i.e. there are no sunk costs. In the absence of experimentation, the decision to export is
static: firms export whenever gross profits exceed fixed costs, as in Arkolakis (2016).

With experimentation, inexperienced firms make an additional consideration: their gross profits
in the market may be boosted by a multiplicative shock ψ, an event that occurs with intensity λ.
After the occurrence of this event, the firm becomes experienced and remains in that state for the
remainder of its lifetime (in that market). While firms have different ψ ex-post, they are assumed
to be identical ex-ante and draw ψ from the same Pareto distribution (with scale parameter greater
or equal to 1). In other words, they are uncertain about how much and fast their profits will jump.

In this environment, the firm enters the foreign market even when operating profits are lower
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than fixed costs. It initially experiments at a loss to “learn” its long-run profitability ψ, expecting
this profit boost to justify the initial investment. However, once the shock is received, the firm
stays active only if operating profits are higher than fixed costs, as there is no further uncertainty
to resolve. The shock ψ embodies two economic forces. On the one hand, the firm knows that,
by experimenting, it will eventually become better at generating profits in the market; this is a
“learning-by-exporting” component. Second, as ψ is stochastic, the firm is uncertain about how
much better it will become at that time. In reduced form, the ψ shock captures that some sources
of uncertainty can only be resolved by exporting. This modelling device is reminiscent of the
learning-about-demand idea in the seminal model by Jovanovic (1982), albeit in a stylized “one-
shot-learning” version.

Using the model, we formalize the argument above that survival probabilities upon entry are
the critical moments for identification. First, we show that firms’ decisions are characterized by a
threshold strategy such that they export if and only if their idiosyncratic profitability is above some
value. Then, we obtain a key analytical result, which is that those probabilities are independent
of the market-specific idiosyncratic profit component and idiosyncratic fixed costs as firms time
their entry and exit decisions as a function of these heterogeneous parameters precisely in a way
that offsets the parameters’ potential impact on survival probabilities. As a result, the latter are
identical across firms as they only depend on common parameters, which alone determine some of
the most important exporter dynamic features - particularly those based on the extensive margin of
export behavior - and can be estimated without any information about the myriad of firm-specific
parameters or even about the probability distribution that generates them.

While static differences across firms do not matter for survival, dynamic differences do. In our
model, those differences stem from experience status. By looking at the differential average behavior
between firms that enter a market for the first time, which are necessarily inexperienced, and firms
that re-enter the market, only some of which are inexperienced, one can infer the importance
of experimentation. In addition, we show that the “uncertain”, rather than the “learning-by-
doing” component of experimentation, explains the result. Indeed, we show analytically that if the
magnitude of the profitability boost ψ - albeit not its timing - were known in advance by the firm,
inexperienced firms would enter markets more conservatively than experienced firms, which would
lead to a higher survival probability for first-time entrants - a counterfactual result. By contrast,
when ψ is unknown, inexperienced firms take more risks than experienced ones, disproportionately
lowering survival for first-time entrants. This effect is more pronounced the larger the variance of
ψ, a result we use for our validation exercise exploiting variation in this variance across markets.2

We estimate the model using firm-level customs data of exports from Peru for the period 1993-
2008. We calculate survival rates one to five years after entry for both entrants and re-entrants.
These ten moments are then used to estimate the model’s parameters with SMM. Despite its

2Another potential dynamic difference between entrants and re-entrants involves the size of sunk costs. However,
under the natural assumption that re-entrants pay a smaller sunk cost, they are predicted to survive less, which is
also a counterfactual result.
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parsimony, the model accurately predicts the survival rates of entrants and re-entrants. Also, our
estimates indicate that firms learn fast: a firm that continuously exports has a 21.6% probability
of receiving the multiplicative shock within a month. The shock also has a considerable dispersion,
which justifies the willingness of firms to experiment in foreign markets in the hope of benefiting
from a good realization of this random variable.

A concern with the centrality played by experimentation in our model is that it is not an observed
component of exporter behavior. Since we do not have direct evidence of experimentation, we take
a two-pronged approach to argue for its empirical relevance.3 First, we exploit variation in the
type of products exported and the distance to the destination. If uncertainty is a key driver of
the low survival rates of new entrants, then we would expect survival to be lower in differentiated
products (relative to homogeneous products) and destinations farther away, both cases where we
expect a higher degree of uncertainty about market profitability. These predictions hold in the
data.4 Second, we show that the model also performs well when fitting other standard untargeted
moments often studied in the literature. In particular, it fits conditional survival and re-entry
moments well, which, as those we use for estimation, are also determined by the “extensive margin”.
In addition, by making some restrictive auxiliary assumptions about model features over which we
do not need to take a stand to generate our main predictions, we show that the model fits other
moments used in the literature related to export growth and survival and growth conditional on
size reasonably well. Here, however, there is sufficient mismatch to suggest the need to enrich the
model, relaxing those restrictive auxiliary assumptions.

Related Literature This paper belongs to an extensive literature on exporter dynamics, surveyed
in Alessandria et al. (2021a). In particular, it is most closely connected to a strand of the literature
that argues that demand uncertainty is a defining feature of export markets (Albornoz et al.,
2012; Nguyen, 2012; Akhmetova and Mitaritonna, 2013; Cebreros, 2016; Li, 2018; Berman et al.,
2019; Eaton et al., 2021). Similar to these papers, our model includes a market-specific uncertain
component that can only be resolved by exporting. We contribute to this literature in three ways.
First, we develop a new framework that is tractable enough to deliver novel analytical results while at
the same time being sufficiently rich to generate quantitative predictions about the main exporter
dynamics facts highlighted in the literature. In particular, we identify a large class of relevant
moments in the data that only depend on four model parameters and are robust to time-invariant
sources of heterogeneity à la Eaton et al. (2011). In this regard, our framework complements
complex structural models in this literature - notably Eaton et al. (2021) - with an alternative
approach that prioritizes parsimony. Second, we document a novel fact on the difference between
the survival rates of entrants and re-entrants. Our model implies that this fact provides critical
evidence supporting an experimentation mechanism that helps resolve foreign market uncertainty.

3There is also evidence from exporter case studies emphasizing the lack of knowledge about export markets as a
key hurdle to exporting (Artopoulos et al., 2013; Domı́nguez et al., 2023).

4Albornoz et al. (2016) show that firms survive more when they have experience in similar markets. While our
model features independent markets, a simple extension of our model would naturally rationalize this result.
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Third, we provide additional empirical evidence on the relevance of experimentation in exporter
dynamics by exploiting differences in survival rates across markets and products.

Another strand of the literature studies economies with a learning-by-doing mechanism where
exporters get better during the first years of their export experience (Schmeiser, 2012; Timoshenko,
2015; Ruhl and Willis, 2017; Alessandria et al., 2021b). Our model also features this channel,
but it differs from these papers in that the size of the profitability improvement is uncertain.
Importantly, we show analytically that a model where the size of improvement is deterministic has
the opposite implications for survival probabilities. If firms get better by exporting but the size of
the improvement is not stochastic, re-entrants would survive more, which is counterfactual.

Finally, we contribute to the literature on time-aggregation biases in export data by uncovering
an additional source of bias on top of the well-understood partial-year effect (Bernard et al., 2017).
Since survival rates are low, many exporters are close to the profitability threshold that makes
exporting optimal, and thus spend part of the year - even years that are not the incursion ones -
out of the export market. As a result, the fraction of the year the firm is “active” in the export
market varies substantially across firms, especially among small and young ones. We show that this
margin is quantitatively relevant for many moments of exporter dynamics. For example, early in
their exporting experience, firms display a larger variance in their growth rates due to significant
variation in the “fraction of time” within a given year that their profitability is above the export
threshold.5 Finally, we also show that the partial-year effect is also quantitatively relevant for other
exporter dynamics moments beyond growth rates (Bernard et al., 2017), such as survival rates.

Outline The rest of the paper is organized as follows. Section 2 describes the two distinguishing
facts about exporter survival that we emphasize in this paper. Section 3 sets up the model and
derives predictions on survival probabilities. Section 4 discusses identification, describes the data
and estimates the model. Section 5 tests for the uncertainty and experimentation mechanism of
the model by looking at its implications across products and markets. Section 6 tests the model’s
predictions for untargeted moments commonly used in the exporter dynamics literature. Section 7
provides concluding remarks.

2 Two central facts about exporter survival

A vast amount of literature has established a number of facts about patterns of firm dynamics related
to their survival (Mansfield, 1962; Evans, 1987; Dunne et al., 1988, 1989), growth rates (Hart and
Prais, 1956; Mansfield, 1962; Evans, 1987; Hall, 1987; Dunne et al., 1989; Davis and Haltiwanger,
1992), and size distribution (Simon and Bonini, 1958; Cabral and Mata, 2003; Luttmer, 2007). A

5This new partial-year effect, which operates on the extensive margin, is closely connected to the decomposition of
the intensive margin between number of shipments and sales per shipment (Alessandria et al., 2010; Kropf and Sauré,
2014; Hornok and Koren, 2015; Békés et al., 2017). Indeed, if the number of shipments is related to the amount of
time a firm spends above the threshold, our model also has implications for this decomposition. See Appendix G for
a formalization of this idea.
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growing strand of literature has uncovered analogous patterns in the dynamics of firm exports. For
example, smaller and younger exporters, like smaller and younger domestic firms, are less likely to
survive and display higher growth rates conditional on survival (Eaton et al., 2008; Berthou and
Vicard, 2015; Arkolakis, 2016). Also, the upper tail of the size distribution of export sales resembles
a Pareto (Eaton et al., 2011; Arkolakis, 2016). Despite the notable similarities, two facts uniquely
distinguish exporter dynamics. The first is that the survival profile (i.e. the line connecting survival
rates at different horizons) of export entrants is low and flat. The second is that the survival profile
of export re-entrants is higher than the survival profile of entrants. This section describes these two
facts and discusses how they guide our search for a parsimonious model of exporter dynamics that
can explain them.

First, we briefly discuss some definitions and basic data issues. We employ firm-level customs
data from Peru for the period 1993-2008 graciously provided to us by the Trade and Integration
Unit of the World Bank Research Department.6 Our dataset covers all export shipments from Peru
between 1993 and 2008 by firm and destination country (i.e. export market). We define an export
“incursion” as the first entry of a firm in a given export market. The “survival rate” ST is the
proportion of incursions that are active in the corresponding export market T years after entry.
We follow an incursion for up to five years. Hence, the “survival profile” is composed of the set of
survival rates {ST }T=1,..,5. Since we do not observe data before 1993, we only consider incursions
starting in 1997 to minimize the chances of falsely identifying as incursions export instances with
an antecedent before 1993.7 Also, since we track survival up to five years after entry, we restrict
the sample to incursions starting no later than 2003. Our definition of survival does not impose
consecutive activity as an exporter up to T . Thus, an incursion that exited at T = 2 but is active
at T = 3 after re-entering the market is considered a survivor in the latter horizon.8

To deal with partial-year effects, we define firm-market-specific years. For every firm-market
pair, we define the entry year starting with the date of the first shipment. For example, if a firm
first exported to a market in June 3rd 1997, then the entry year is June 3rd 1997 - June 2nd 1998,
the first year where we study survival is June 3rd 1998 - June 2nd 1999, and so on. In Appendix B,
we present this paper’s empirical results alternatively using annual data based on calendar years.
The results are qualitatively similar; the main quantitative difference occurs in the first year, which
becomes subject to the well-known partial-year effect (Bernard et al., 2017).

If the firm does not maintain a continuous presence in the market during all consecutive (firm-
market-specific) years after the incursion, subsequent entries are defined as “re-entries”. We define
an export re-entry as the start of a new spell of exports to a destination by a firm that has exported

6The dataset was collected by this unit as part of their efforts to build the Exporter Dynamics Database. Details
of its construction are described in the Annex of Cebeci et al. (2012).

7For example, incursions in 1997 would be false if the firm exported in the past but not in the last four years.
Using the latest years in our database, we find the proportion of incursions that have exported in the past but not in
the last four years to be 8.4%. As we consider incursions in later years, false incursions will arise only after a longer
period of inactivity. For example, the proportion of false incursions is 3%(1%) when we firms are inactive for 7(10)
years. Averaging across incursions in all years, we estimate the proportion of false incursions to be 3.3%.

8We consider alternative definitions of survival, e.g. continuous survival, in Section 6.1.
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to that destination in the past but has not done so in the previous year. When studying the survival
of the re-entrant firm, we consider years specific to that re-entry. That is, if the re-entry happened
on November 30th 2001, then the re-entry year is November 30th 2001 - November 29th 2002, the
first year where we study survival is November 30th 2002 - November 29th 2003, and so on. Note
that, given our definition of survival, re-entries may also be instances of survival for the original
incursion.9

A potential concern with our re-entrant definition is that some firms may be re-entrants not
because of profitability but because of the natural frequency of shipments. In Appendix C, we
exploit our shipment-level data to construct alternative definitions of re-entry based on the minimum
time period elapsed between consecutive shipments (12 months, 18 months, 24 months). We find
that the results presented below are robust to these alternative definitions.

Fact 1: The exporter survival profile is low and flat

Figure 1a shows the survival profile of export incursions in our dataset (solid-blue line). A
striking feature of this profile is how low survival rates are. Only 29.4% of Peruvian export incursions
are still active one year after entry. Five years after entry, the survival rate is 16.9%.10 Another
salient feature of the survival profile is the flat slope after T = 1. In contrast to the vast fraction of
firms that exit just after entering the export market, further exit at longer horizons is considerably
more gradual. As a reference, Figure 1a displays the survival profile of U.S. domestic firms as
production units (dashed-red line).11 Compared to exporter survival rates, domestic survival rates
are substantially higher. The first year after entry, 77.9% of U.S. firms in an entry cohort are still
in operation. Five years after entry, the survival rate is 49.1%.12

The slope of the exporter survival profile depicted in Figure 1a is not driven by compositional
effects. Alternatively to the raw data used to display fact 1 in the figure, we can obtain the survival
profile by controlling for other covariates in a regression framework. The results are displayed in
Table A.1. First, we regress the survival status of incursions in each of the first five horizons on
horizon dummies (column 1).13 This exercise is equivalent to simply calculating the survival rate

9Here, we focus on the first re-entry of an exporter whose incursion we observe. We do this for consistency with the
estimation in Section 4. The results are very similar using all re-entrants and with alternative definitions of re-entry,
including those based on calendar years (see Appendix B and C, respectively).

10Low survival rates are not specific to Peru. Using data from the Exporter Dynamic Database, Cebeci et al. (2012)
report that the average and median one-year survival rates across 38 countries are both 43%. Splitting the sample
into developed and developing countries, the average survival rate is 43% for each of the two groups. For Peru, they
find a survival rate of 44%. Their reported rates are higher because they are calculated by merging all destinations
into one aggregate export market.

11Domestic survival rates are computed using the number of firms by entry cohorts reported in the Business
Dynamics Statistics (BDS) constructed by the Bureau of the Census. For comparison with export survival rates,
we only consider tradable-firm producers (agriculture, mining, and manufacturing) in entry cohorts 1997-2004. The
survival profile is almost unaffected if we include only manufacturing firms or firms in all remaining sectors. Note
that these data are yearly, so we cannot correct for the partial-year effect.

12Domestic and exporter survival rates are not strictly comparable. While domestic survival rates capture persis-
tence as an employer, exporter survival rates capture persistence as a seller in a specific market.

13Standard errors are computed by clustering at the firm level, allowing for arbitrary correlation between the survival
status of incursions and re-incursions of a firm at any horizon and across markets.
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Figure 1: Two key facts of exporter dynamics

per horizon, as we did in the figure.14 Then, we add a set of fixed effects by product (2-digit
Harmonized System) and destination-year (i.e. the country and year corresponding to the survival
status).15 We can see in column 2 that adding these flexible controls has a negligible impact on the
estimated survival rates.

The fact that exporter survival rates are notoriously low has already been emphasized in the
literature.16 Freund and Pierola (2010), Albornoz et al. (2012), Nguyen (2012), and Eaton et
al. (2021) provide a plausible explanation for this fact. If export profitability has an uncertain
component that can only be resolved by actively exporting, firms have incentives to export as an
experiment to resolve this uncertainty. Thus, export entry is consistent with low survival rates to
the extent that firms do it as a bet on a relatively unlikely outcome. This is also the core mechanism
in our model. As long as firms resolve their uncertainty sufficiently fast, this mechanism can explain
both features of the exporter survival profile. It is low at early horizons because many firms exit
soon after they find that exporting is not profitable. It is flat because firms that have received a
favorable shock are less likely to exit afterwards.

As an additional reference, Figure 1a also displays the survival profile predicted by a special case
of our model – the benchmark model – where this source of uncertainty is removed (dotted-green
line).17 As we can see in the figure, the benchmark model cannot predict the exporter survival
profile observed in the data as it predicts survival rates that are too high early upon entry but too
low at longer horizons. Despite the specificity of this special case, its inability to fit the exporter

14Year 1 is the base group, so to compute the numbers in the figure, one needs to add the constant and the
corresponding horizon dummy.

15Since years are firm-market-specific, they involve more than one calendar year. Thus, for each firm-market
incursion, we attribute the calendar year with the largest overlap, e.g. if the firm-market-specific year is May (October)
1st 1997 - April (September) 30th 1998, then we attribute the year 1997 (1998) for the purpose of the year fixed effect.

16See, among others, Eaton et al. (2008), Volpe Martincus and Carballo (2009), Nguyen (2012), and Ruhl and Willis
(2017).

17Section 4.4 discusses the estimation of the benchmark model.
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survival profile represents the implications of a broader family of firm and exporter dynamics models
where profitability follows a persistent process. These models struggle to explain low survival rates
at early horizons without also predicting a counterfactual steep survival profile.

Fact 1 has been key to motivating recent work on uncertainty and experimentation in models
of exporter dynamics. Nevertheless, it is the novel fact we present next that, combined with fact 1,
makes a substantially stronger case for the relevance of such models.

Fact 2: The survival profile is higher for re-entrants than for (first-time) entrants

Firms often temporarily cease to export only to re-enter the same market later. In our dataset,
20% of the incursions that exit a market re-enter that market within five years. Figure 1b com-
pares the survival profile of re-entrants (dashed-red line) with the profile for (first-time) entrants
(solid-blue line). Re-entrants have uniformly higher survival rates. Most of the difference already
occurs in the first year after entry, when the survival rate is 40.6% for re-entrants versus 29.4%
for entrants. Over longer horizons, this gap is preserved with only slight changes. Like fact 1, fact
2 is not driven by composition either. Columns 3 and 4 of Table A.1 display analogous results
including re-incursions. In column 3, we include horizon dummies for re-entrants, which delivers
the survival rates depicted in Figure 1b. In column 4, we include a full set of dummies by product
and destination-year. Again, we find that these controls for composition do not substantially affect
the survival profiles depicted in the figure.

Fact 2 has no corresponding analogue in the firm dynamics literature. As a matter of fact, we
are not aware of any study that has computed re-entrant domestic survival rates. A likely reason
is that instances of domestic re-entry are much more infrequent than in the case of exports and are
typically either dismissed as a nuisance or tinkered with assuming them as measurement error.18

An appealing explanation for the higher survival rates of re-entrants arises naturally from the
experimentation mechanism described above. Firms that exit and re-enter could have already
resolved their uncertainty and, hence, do not enter to experiment. As their (re-)entry decisions are
made with more accurate information about their potential profitability, they are more conservative
about entering and, hence, tend to survive longer. Next, we build a model to formalize this idea.

3 The model

In this section, we develop a partial equilibrium model of firm export behavior. For tractability, we
assume that firms’ export decisions are independent across markets.19 Next, we study the firm’s

18Due to how “entry” is defined in standard firm dynamic databases (Baldwin et al., 2002), recorded re-entry
instances might be spurious. For example, the BDS reports that re-entry instances represent 7% of incursions.
However, since the database only includes firms with at least one employee in its payroll, a large fraction of this
percentage probably comes from transitions in and out of employer status (Jarmin and Miranda, 2002).

19In our model, this can be microfounded using CES demand, linear variable costs, no interdependence in fixed
costs across markets, and independence across markets in the market-firm-specific shifter ψ introduced below. Inter-
dependence in export decisions substantially increases the theoretical and computational complexity of the problem
(see Albornoz et al., 2016 for an analytical example and Alfaro-Urena et al., 2023 for a quantitative model).
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problem in a given market. To economize on notation, we avoid firm and market subindexes.

3.1 Set up

Firms go through two stages in their lifetime as exporters in a given market. At first, they are
inexperienced (i) and earn flow profits

πi(θt) =
{
κθt − F if export at t

0 otherwise

}

where θt is a time-varying index of profitability, κ > 0 is a constant profitability parameter, and
F > 0 is a fixed cost. These three determinants of export potential are firm-market specific. Time-
varying profitability follows a geometric Brownian motion (GBM),20

d log θt = µdt+ σdZt. (1)

Firms are born with profitability θ̄ > 0. µ, θ̄ and σ are common across firms.21

Since all firms are born with θ̄, κ is an index of initial profitability in the market. For example, a
high value of κ may capture a better ability to make product adaptations that match export market
idiosyncrasies based on a prior understanding of the market’s demand features (Artopoulos et al.,
2013). This parameter may also capture an advantage in communicating or conducting transactions
with foreign agents at lower variable trade costs, e.g. due to family ties. The fixed expenses F
represent the costs incurred in activities such as sustaining a distribution network and conducting
marketing efforts in the foreign market, which are paid on a continual basis while exporting.22

For inexperienced firms, exporting yields additional benefits beyond receiving flow profits. In-
experienced firms know that their current profitability level in the export market is only transient
and that they will eventually become experienced if they keep exporting. More specifically, while
exporting, inexperienced firms become experienced (e) with intensity λ. An experienced firm earns
flow profits

πe(θt;ψ) =
{
ψκθt − F if export at t

0 otherwise

}

where ψ is a firm-specific profitability shifter that is absent in the case of an inexperienced firm.23

20The profitability parameter θt can be microfounded as the combination of random processes for demand and
productivity jointly determined by a multivariate GBM in a stationary competition environment with CES preferences.
See Luttmer (2007).

21We assume that the firm’s discount factor satisfies r > µ+ 1
2σ

2 so that expected profits are finite, which is satisfied
by our estimated values. Furthermore, to guarantee the existence of a stationary distribution, we follow Arkolakis
(2016) and assume that the mass of firms that are born at each instant grows at rate gB > 0. We could also assume
an exogenous death rate δ > 0. However, δ would directly affect survival probabilities while gB does not.

22Note that we do not include entry sunk costs in the model, so firms may exit and re-enter markets freely. While
this is an assumption made for simplicity, we argue in Section 4.4 that sunk costs are not necessary to obtain the
qualitative predictions of the model, nor do they help improve its quantitative predictions.

23Alternatively, we could have modelled ψ affecting fixed costs rather than operating profits. This decision is
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We assume ψ ∼ Pareto(ψm, α). The scale parameter ψm governs the potential for profit scaling
up when the firm becomes experienced. We assume ψm ≥ 1, which implies that being experienced
is always desirable. The shape parameter α is the critical parameter in our model, as it governs
the extent of uncertainty the firm faces. A lower value of α implies the distribution has a higher
variance and fatter tails.

A key feature of our model is that ψ is unknown ex-ante by inexperienced firms. This captures
the fact some sources of uncertainty are hard to unravel without actively participating in the
targeted export market. For example, firms may be uncertain about the appeal of their products
at the destination or their ability to engage the right distributors to push them in those markets
(Eaton et al., 2021).

3.2 Entry and exit decisions

We assume the firm is rational and maximizes the present-discounted sum of its expected profits.
The problem has three state variables: profitability θt, experience status x ∈ {i, e}, and, conditional
on being experienced, the shifter ψ. Henceforth, it will be convenient to work with normalized
profitability, defined as θ̃t ≡ κθt

F . By Ito’s Lemma, θ̃t is a GBM with the same parameters as θt.

The firm’s problem is choosing an exporting policy {ye(θ̃;ψ), yi(θ̃)}ψ,θ̃ to maximize profits,
where ye(θ̃;ψ) and yi(θ̃) are indicator variables that take a value of one if the firm exports and
zero otherwise. We solve this problem in two steps. Since x = e is an absorbing state, we first
solve for the optimal policy of an experienced firm {y∗

e(θ̃;ψ)}ψ,θ̃. Then, we solve for the optimal
policy {y∗

i (θ̃)}θ̃ of an inexperienced firm, taking into account that once it becomes experienced it
will follow policy {y∗

e(θ̃;ψ)}ψ,θ̃.

The experienced firm In Appendix D.1, we show that the experienced firm’s problem can be
written as the solution to following Hamilton-Jacobi-Bellman (HJB) equation,

rVe(θ̃;ψ)dt = max
y∈{0,1}

{
F
(
ψθ̃ − 1

)
y
}
dt+ E

(
dVe(θ̃;ψ)

)
(2)

This equation says that the return of the firm is the sum of the instantaneous profit flow plus
the expected appreciation. Since future profitability is independent of the firm’s actions and there
are no exit or re-entry costs, the exporting decision only depends on whether current profits are
non-negative. Thus, the firm’s optimal policy is simply y∗

e(θ̃;ψ) = 1 if θ̃ ≥ 1
ψ and y∗

e(θ̃;ψ) = 0 if
θ̃ < 1

ψ .

inconsequential in explaining facts related to exporter survival.
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The inexperienced firm In Appendix D.1, we show that the inexperienced firm’s problem can
be written as the solution to the following HJB equation,

rVi(θ̃)dt = max
y∈{0,1}

{
F
(
θ̃ − 1

)
+ λ

(
EψVe(θ̃;ψ) − Vi(θ̃)

)}
ydt+ E

(
dVi(θ̃)

)
. (3)

The term in brackets in equation (3) clarifies the potential trade-off involved in the firm’s exporting
decision. On the one hand, by exporting, there is a chance that the firm will become experienced.
Accordingly, the term λ(EψVe(θ̃;ψ) − Vi(θ̃)) captures the benefits of experimentation, which are
always positive since profits are higher for an experienced firm. Thus, inexperienced firms unam-
biguously prefer to export when θ̃∗ ≥ 1. On the other hand, when θ̃ < 1 the first term becomes
negative, i.e. F (θ̃ − 1) < 0. In this case, the firm faces a trade-off: by exporting it earns the
possibility of becoming experienced at the cost of incurring a contemporaneous loss. The following
proposition shows that there exists a region (θ̃∗, 1) where firms choose to experiment.24

Proposition 1. (a) The unique piecewise-continuous optimal policy is characterized by a threshold
θ̃∗ ∈ [0, 1) such that if θ̃ < θ̃∗, the firm does not export while if θ̃ > θ̃∗, the firm exports; (b) θ̃∗

solves
F
(
θ̃∗ − 1

)
+ λ

(
EψVe(θ̃∗;ψ) − Vi(θ̃∗)

)
= 0. (4)

Proof. See Appendix D.2.
In Appendix D.3, we show that (4) can be solved to obtain

θ̃∗ − 1 + λ

( 2
J + J̃

){∫ ∞

θ̃∗

(
θ̃∗

z

)β̃1

(Eψ (max (ψz − 1, 0)) − (z − 1)) dz
z

(5)

+
∫ θ̃∗

0

(
θ̃∗

z

)β2

Eψ (max (ψz − 1, 0)) dz
z

}
= 0.

where J =
√
µ2 + 2rσ2, J̃ =

√
µ2 + 2 (r + λ)σ2, β̃1 = −µ+J̃

σ2 > 1 and β2 = −µ−J
σ2 < 0.

The intuition for (5) is as follows. First, note that, for any GBM, we can write the solution as
an integral of the flow profits over states z multiplied by a “weight” for that state.25 The weight

24This result does not rely on the fact that θt follows a GBM and ψ is a multiplicative Pareto shock. In Appendix
D.2, we provide a more general set of sufficient conditions that guarantee that the firm follows a single-threshold
strategy. The key condition, which is satisfied in our setup, is:

dλEψ (max {πe (θt;ψ) , 0})
dθt

>
d limdt→0

{
E(e−rdtπi(θt+dt)) − πi (θt)

}
dθt

.

This condition says that the expected flow benefits of becoming experienced should increase faster than the costs of
experimenting today rather than tomorrow (recall πi < 0 in the relevant region). This rules out cases in which there
is a region for θ where experienced-firm profits are relatively high, but inexperienced-firm losses from exporting are
strongly decreasing in θ, inducing firms to wait, and another region in which inexperienced-firm losses from exporting
are flat in θ and experienced-firm profits are low but high enough that firms want to export. In addition, we show for
arbitrary distributions of ψ that, as long as Eψ ≥ 1, θ̃∗ < 1, i.e. firms experiment at a loss.

25The weight here is
(

2
J+J̃

)(
θ̃∗

z

)β̃1 1
z

for θ̃ > θ̃∗ and
(

2
J+J̃

)(
θ∗

z

)β2 1
z

for θ̃ < θ̃∗. This is a property of GBM

13



represents the length of time the process spends in each state, taking into account the proper
discounting. For states with z > θ̃∗, the correct discount – which is reflected in β̃1 – is r + λ since
the inexperienced firm becomes experienced at rate λ. Since the inexperienced firm exports in that
region, the integrand is the difference between the (expected) flow profits of an experienced firm
and that of an inexperienced firm. Note β̃1 > 0 since larger z are less likely and, therefore, more
heavily discounted. For states z < θ̃∗, only some experienced firms export. Hence, we only have
the (expected) flow profits of an experienced firm. The proper discount, reflected in β2, is now r

since an inexperienced firm remains inexperienced in this region. Note that β2 < 0, reflecting that
when z < θ̃∗ lower states are less likely and, thus, more heavily discounted.

Equation (5) shows a very convenient feature of our uncertainty and experimentation model:
only one equation in one unknown needs to be solved to characterize the whole strategy of the
firm. This property will enable us to understand more transparently, as discussed in later sections,
how the model works and how the different features of exporters’ observed behavior discipline the
model.26 Furthermore, note that F and κ do not appear in (5). This is a key property of the model,
as it implies that θ̃∗ does not depend on these parameters. In other words, θ∗ is proportional to κ
and to 1

F . Intuitively, the firm “undoes” the effect of κ and F by timing its entry decision: a low-κ
firm will wait longer until θ is large enough to perfectly offset the effect of κ. This property of the
model is going to be very important in the next section and the empirical exercise.

The left and right panels of Figure 2 plot two sample paths of operating profits normalized by
fixed costs (solid-orange line). In both panels, the history of time-varying profitability {θ̃t}∞

t=0 and
whether the firm learns conditional on exporting are identical. However, the magnitude of the shock
ψ differs. Firms are originally inexperienced and stay away from the market as long as normalized
profits are below θ̃∗ (dashed-blue line). As soon as θ̃t exceeds θ̃∗ they start to export. At this
point, firms are experiencing losses since θ̃∗ is lower than one. Nevertheless, firms are willing to
experiment and incur losses to resolve the uncertainty concerning their profitability shifter ψ. In
the figure, as profitability drifts down, firms exit the market before ψ is realized. Eventually, firms’
profitability improves again, and they re-enter the market. This is the first type of re-entrant in
our model: inexperienced re-entrants, who are identical to first-time entrants. During the second
export spell, firms become experienced. When they do, the relevant threshold for normalized
operating profits becomes 1 (dashed-blue line). In the left panel, the ψ shock is too small and the
firm exits. In the right panel, the ψ shock is sufficiently large and the firm continues exporting.
Profitability subsequently worsens, so even the high-ψ firm exits the export market after a while.
Later, profitability improves again, and the firm re-enters the export market. This is the second
type of re-entrant in our model: the experienced re-entrant.

Understanding survival upon entry for this type of re-entrant, an experienced firm, vis-à-vis a

processes (see Stokey, 2009).
26πi and πe being both linear in θ (or, equivalently, ψ being multiplicative) is not essential for this result. In

Appendix D.3 we show that with general profit functions πi(θ) and πe(θ;ψ) the problem can still be reduced to one
equation in one unknown.
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Figure 2: Sample paths.

first-time entrant, an inexperienced firm, is the key to explaining fact 2. We study this next.

3.3 Survival upon entry: Key properties

Henceforth, we assume that all firms are born inactive in the export market, i.e. κθ
F < θ̃∗. Normal-

izing the entry time to t = 0, an inexperienced firm enters the foreign market with θ̃0 = θ̃∗. Since
θ̃t is a GBM,

ln θ̃t = ln θ̃∗ + µt+ σZt

where Zt is distributed N (0, t). Defining kt ≡ ln θ̃t−ln θ̃∗

σ ,

kt = µ

σ
t+ Zt.

First, note that an inexperienced firm is active iff

ln θ̃t > ln θ̃∗ ⇔ kt > 0 ⇔ Zt > −µ

σ
t. (6)

Thus, the likelihood of this event happening at any time t depends only on µ
σ . In other words,

the variance of the process does not matter once the drift is scaled appropriately. Since entry
and exit thresholds coincide conditional on remaining inexperienced, a larger variance amplifies the
profitability trajectory, but it does not affect whether it is above or below the initial entry point.
Furthermore, since an exporter becomes experienced with intensity λ, the likelihood of becoming
experienced depends only on µ

σ and λ.

Second, define ψ̃ ≡
(
ψ
ψm

) 1
σ , which is distributed Pareto(1, ασ). When a firm is experienced, it

is active iff

ln θ̃t + lnψ > 0 ⇔ ln kt + ln ψ̃ > − ln(ψmθ̃∗)
σ

⇔ Zt + ln ψ̃ > −µ

σ
t− ln(ψmθ̃∗)

σ
(7)
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Thus, the likelihood of this event depends only on µ
σ , ln(ψmθ̃∗)

σ and ασ. Like before, the variance of
the process, σ, does not matter if everything else is scaled appropriately. In this case, we need to
adjust not only the drift µ but also the size of the required profitability boost to survive, − ln(ψmθ̃∗),
and the shape parameter of the Pareto distribution, α.

Let y (t) be an indicator function that takes the value of 1 if the firm is an exporter at t.
Using the results in the preceding paragraphs, we conclude that knowing Υ =

{
µ
σ , λ,

ln(ψmθ̃∗)
σ , ασ

}
is sufficient to determine the likelihood of any given trajectory of {y(t)}∞

t=0 upon entry. In other
words, any combination of parameters that delivers the same Υ implies the same probability of a
firm being an exporter at any given instant. Henceforth, we call this aspect of an export trajectory
the “extensive margin” of exporter dynamics.

To contrast the model with the data, we study a variety of moments that are different ag-
gregations of events over multiple instants. Among these moments, we can identify a class, M1,
comprised of moments that only aggregate over the extensive margin. Formally, let us define a
function g : {y(t)}∞

t=0 → R that maps a given survival trajectory - i.e. a series of zeros and ones -
onto a number. For example, as will be later discussed, when we study survival at horizon T , for
any trajectory {y(t)}∞

t=0, the function g returns a value of 1 or 0 depending on whether the firm in
the model survives (exports) at least one instant between T and T + 1. The moment of interest
m is then the average of this dichotomous function across firms, i.e. m = Eg. In this example, the
resulting moment is the model prediction for a point in Figure 1b.

Any moment m that belongs to this class, M1, depends only on Υ, as shown in Proposition 2
below. This is important, as it implies that these moments are robust to assumptions on any other
parameters of the problem or unspecified features of the environment, e.g. the mapping between
profitability and sales. Particular cases are the survival-upon-entry moments that constitute fact 1
and fact 2, which we use to discipline our model. In Section 6.1, we study other common survival
and re-entry moments belonging to this class.

Proposition 2. We say that a moment m belongs to a class of moments M1 if it can be written
as m = E (g) for some function g : {y(t)}∞

t=0 → R. Any moment m ∈ M1 depends only on Υ.
In particular, the survival moments that constitute facts 1 and 2 in Section 2 belong to M1 and,
therefore, depend only on Υ.

Proof. In the text, we show that the probability of any individual event y(t) ∈ {0, 1} only depends
on Υ. We only need to show the same is true for the argument of g: a trajectory, which is comprised
of individual instants. Equations (6) and (7) and the fact that the firm becomes experienced with
intensity λ imply that the likelihood of a given trajectory {y(t)}∞

t=0 is determined by ln(ψmθ̃∗)
σ ,

and λ, which are the first two elements that comprise Υ, and random variables ψ̃ and {kt}∞
t=0.

ψ̃ is distributed Pareto(1, ασ). By Ito’s Lemma, kt is a GBM with drift µ
σ and unitary variance.

Therefore, the likelihood of any given trajectory {kt}∞
t=0 only depends on µ

σ . This concludes the
proof.
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Another important consequence of Proposition 2 is the following:

Corollary 1. Any moment m in class M1 is independent of κ and F . In particular, as the moments
that constitute facts 1 and 2 in Section 2 belong to M1, they are independent of κ and F .

Proof. By Proposition 2, m only depends on Υ. From equation (5) it follows that θ̃∗ is independent
of κ and F . Thus, m is also independent of κ and F .

Corollary 1 is a key result. It establishes that the probability of survival of an export incursion is
independent of κ and F and hence only depends on parameters that are common across firms.27 The
main implication of this result is that all firms entering a given market have the same probability
of survival T periods after entry. The strength of this prediction is achieved despite a substantial
amount of heterogeneity in the model allowed for by heterogeneous profit shifters (κ) and fixed costs
(F ) across firms and markets. Heterogeneity in κ allows the model to affect the likelihood of any
entry sequence into foreign markets. This parameter, however, does not provide any information
about the probability of survival in the market once it has entered it.

Since entry profits are given by π0 ∝ F (the common factor of proportionality is θ̃∗), heterogene-
ity in F also implies heterogeneous sales at the time of entry. For example, if sales are a constant
proportion of profits, entry sales will also be proportional to fixed costs. Thus, the model has a de-
gree of freedom left to rationalize the shape of the firm size distribution by adjusting the distribution
of fixed costs accordingly. Most results in this paper do not depend on specific assumptions about
this distribution, which we do not need to impose. The two implications of Corollary 1 highlight
an advantage of focusing on entrant survival since we can obtain sharp predictions on observables
without sacrificing flexibility over firm-specific parameters we know little about.

Next, we provide a sharper characterization of the facts described in Section 2. The probability
of survival upon entry of first-time entrants in horizon T is given by:28

pft(T ) = Pr(∃t ∈ (T, T + 1)|y(t) = 1, θ̃0 = θ̃∗). (8)

The probability of survival for a re-entrant is defined similarly, except that we need to take into
account whether they are experienced or not,

pre(T ) = Pr (xre = e)Pr(∃t ∈ (T, T + 1)|y(t) = 1, θ̃0 = 1)+ (9)

Pr (xre = i)Pr(∃t ∈ (T, T + 1)|y(t) = 1, θ̃0 = θ̃∗)

27An analogous result concerning heterogeneous market-specific profitability shifters is obtained in Albornoz et al.
(2016) in a framework without experimentation.

28Previous research often focuses on “instantaneous” survival probabilities, e.g. Pr(y(T ) > 1). We find that, in the
context of our paper, these instantaneous measures are useful abstractions to build intuition, but they provide a poor
quantitative approximation to the objects we can measure in the data. The reason is that firms spend a good share
of their time close to the threshold, and there is an important margin of variation given by the amount of time a firm
decides to export within a year. We discuss these time-aggregation issues in Section 6 and Appendix B.
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where Pr (xre = i) and Pr (xre = e) are the probability of being inexperienced and experienced
at the moment of re-entry, respectively. In the special case without experimentation (λ = 0),
there is no difference between the survival probabilities of first-time entrants and re-entrants. With
experimentation (λ > 0), inexperienced and experienced firms behave differently. While all first-time
entrants are inexperienced firms, only a share of re-entrants are. Thus, their survival probabilities
differ. Since λ is the key parameter controlling this composition effect, it is crucial to match the
size of the survival gap between entrants and re-entrants.

The other key parameter that allows the model to explain facts 1 and 2 is α, which controls the
uncertainty surrounding the firm’s future profitability in the export market, ψ. As α decreases, the
mean and variance of ψ increase. Because of the possibility of inaction, firms like taking a gamble in
this model: they reap the benefits from a high ψ, but they can exit if ψ turns out to be low.29 Thus,
when the shock’s variance is larger, firms have incentives to enter earlier in the export market in
the hope that a good realization of the shock will substantially boost profits. Formally, Proposition
3 establishes that the threshold θ̃∗ increases with α.

Proposition 3. The normalized threshold θ̃∗ increases with α.

Proof. See Appendix D.4.

Although it is intuitive to think that entering the export market earlier would lead to a lower
survival probability, this need not always be the case. A lower α also implies higher chances of
experiencing large realizations of ψ, placing the firm well above the exit threshold and making it more
likely to survive. This is the reason why no general proposition can be obtained regarding a lower
survival probability in response to a lower α. Nevertheless, firms experiment aggressively at our
estimated parameter values, so the intuitive result holds: inexperienced firms’ survival probability
is smaller than that of experienced firms at all horizons, and the gap between them increases with
uncertainty. This implication of a lower α can be seen in Figures 3a and 3b, which plot the survival
probability (solid-orange line) as a function of α at one-year and five-year horizons, respectively,
with the remaining parameters at their estimated values. Note that, as α → ∞, the gains from
experimentation vanish and the model’s predictions converge to the survival rate of experienced
firms (dashed-blue line).

An avid reader may wonder to what extent these results are driven by uncertainty since α also
changes the mean of the distribution. A clean exercise to address this concern is to modify the
scale parameter ψm, which changes the mean of the distribution while keeping its shape intact.
Proposition 4 shows that a more attractive distribution, i.e. one with a higher ψm, leads to firms
surviving more, not less.

29Formally, this risk-loving behavior is captured in equation (5) by the term Eψ(max {ψz − 1}), which decreases
with α.
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Figure 3: The effect of uncertainty (α)

Proposition 4. The probability of survival of a first-time entrant at any horizon increases with
ψm.30

Proof. See Appendix D.5.

To understand this result, it is useful to compare changes in ψm and κ of the same size. Recall
that the normalized threshold θ̃∗ = κθ∗

F is independent of κ, which implies that if κ increases then
the threshold θ∗ decreases exactly such that κθ∗ stays constant. An increase in ψm raises profits
for any realization of the shock, similar to an increase in κ. The key difference is that ψm does not
increase profits during the experimentation period. As a result, relative to an equivalent change
in κ, a change in ψm makes the experimentation phase more costly, implying that ψmθ̃∗ increases
with ψm. In other words, the firm does not fully offset the higher future profits by entering earlier.
Hence, after ψ is realized, the inexperienced firm finds itself farther away from the threshold, with
higher chances of surviving.

Proposition 4 is also crucial to understand the role of uncertainty about ψ to generate lower
survival. Consider a firm that knew its ψ beforehand. In our model, this would imply setting
ψm = ψ and α → ∞ (i.e., a deterministic jump size). We know that, if ψm = 1, being experienced
is the same as being inexperienced. Therefore, by Proposition 4, if ψm > 1, this firm would survive
on average less as an experienced firm than as an inexperienced firm. Thus, since ψ ≥ 1 for all
firms, a model where ψ is known ex-ante would be unable to explain fact 2.

In sum, a model with an experimentation phase subject to uncertainty can explain facts 1 and 2.
High uncertainty (i.e., a low α) induces inexperienced firms to experiment aggressively, explaining
high early exit rates. Furthermore, since low survival probabilities at short horizons are obtained
without resorting to a very negative trend, the model has a degree of freedom in µ

σ to match the flat
30This is valid for any family of distributions linked by a scale parameter, i.e. if we have two distributions ψ1, ψ2

such that ψ1 = ψmψ2, then the result carries over.
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slope of the survival profile in fact 1. Finally, fact 2 is explained by a composition effect: first-time
entrants are 100% inexperienced, whereas only a fraction of re-entrants are. The remaining fraction
of experienced re-entrants do not engage in risky experimentation and, therefore, survive more.

4 Estimation

4.1 Parameter identification

We discipline the model parameters using the moments underlying facts 1 and 2 in Section 2.
An immediate implication of Proposition 2 is that our model has only four degrees of freedom to
match these moments. That is, any combination of parameters {µ, σ, λ, α, ψm, r} that yields the
same Υ = { ln(ψmθ̃∗)

σ , µσ , σα, λ} will imply the same extensive-margin moments.31 To make progress,
we set r = 0.1 and make the natural assumption that ψm = 1, which implies that the firm learns
nothing under the worst possible realization of ψ. This value for ψm also has the appealing property
of converging to a standard model without experimentation as uncertainty decreases, i.e. as α → ∞.
We are thus left with φ = {µ, σ, λ, α}, which we estimate via simulated method of moments (SMM).
Our SMM estimator chooses φ to minimize m(φ)′m(φ), where m(φ) are the ten survival moments
in Section 2 (details in Appendix E).

The four parameters affect all ten moments, so providing intuition for the individual identifica-
tion of each parameter is not straightforward. However, some insight can be obtained by analyzing
the influence of each parameter on some key features of the survival profiles described in Section 2.
Consider first the main feature of fact 1: the high exit rate early upon entry. Figure 4a plots the
first-year survival probability of a first-time entrant as we vary each of the four parameters from
0.5 to 2 times its estimated value. A higher λ and a lower α increase, respectively, the speed and
magnitude of the potential prize, making firms experiment more aggressively and thus survive less.
Regarding the parameters of the GBM process, a larger, more negative, drift µ or a smaller variance
σ imply, as in the benchmark model, a more negative normalized drift µ

σ , which also leads to lower
survival rates.32

Second, consider fact 2, i.e. the gap between the survival profile of entrants and re-entrants.
Since re-entrants survive more than first-time entrants, the experimentation mechanism must be
active, i.e. λ > 0 and α < ∞. Figure 4b plots the first-year survival-rate gap between entrants
and re-entrants, also varying one parameter at a time. The effect of λ is straightforward: (i) it
lowers survival among first-time entrants by making them more eager to enter and, (ii), it increases
re-entrant survival relative to first-time entrants since firms are more likely to be experienced when
they re-enter. Both effects increase the gap. By contrast, the effect of α is more subtle. On the
one hand, as discussed in Section 3, a lower α (higher uncertainty) should decrease survival among
inexperienced firms and thus increase the gap in early years. However, α also affects the composition

31Note that the normalized threshold θ̃∗ is a function of these six parameters - see equation (5).
32The fact that this effect dominates is a non-trivial numerical result since µ and σ also affect the threshold θ̃∗.
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Figure 4: Parameter identification

Notes: In each figure, the horizontal axis denotes the ratio of model parameter x ∈ {µ, σ, λ, α} to its estimated value
x̂ ∈ {µ̂, σ̂, λ̂, α̂}, expressed in logarithmic scale. The range of variation is from x

x̂
= 0.5 to x

x̂
= 2; −0.69 to 0.69 in

logs. Note that µ̂ < 0 (see Section 4.3), so µ becomes more negative to the right. The vertical axes in each panel
are, respectively: (a) first-year survival probability of a first-time entrant; (b) first-year re-entrant survival probability
minus first-time entrant survival probability; (c) five-year minus first-year survival rates of a first-time entrant; (d)
five-year minus first-year survival rates of a re-entrant.

of re-entrants. When α is low, firms bet on a small probability yet very profitable outcome. As
most firms receive negative news (i.e. an insufficient ψ) and are very unlikely to re-enter, there are
few experienced re-entrants. Thus, in this case, most re-entrants tend to be inexperienced, which
reduces the gap. In our simulations, the effect of α on the gap is hump-shaped and the estimated
value is near the peak of the hump, so that variation in uncertainty does not have a large effect
on the gap.33 Finally, note that the other parameters, µ and σ, are not innocuous to the gap size.
A more negative µ lowers survival for every firm, but it does so relatively more for re-entrants as
a fraction of them are experienced. The effect of σ is more complicated since it also affects the
relative importance of the shock, i.e. ασ matters in Υ. Like α, the overall effect of σ on the gap
depends on the region of the parameter space.

33Our estimate for α is 5.43 and the peak is at 6.71. Furthermore, the gap tends to zero not only when α → ∞ (no
uncertainty), but also when uncertainty becomes very large, more precisely when α → 1 from above.
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Finally, consider the second key feature of fact 1: survival profiles that are too flat. To capture
this feature, Figures 4c and 4d plot the difference between first- and fifth-year survival rates among
first-time entrants and re-entrants, respectively. A larger λ and a smaller µ make the profile flatter
by “killing” more firms early and by making µ

σ smaller, respectively. µ matters more for re-entrants,
who are less affected by the shock. The effects of α and σ are more subtle and depend on their
location in the parameter space. Notably, while α and σ seem to have similar effects on the outcome
variables in panels (a) through (c), their impact on the slope of the re-entrant profile in panel (d)
is different in a neighborhood of our estimated values.

4.2 Descriptive statistics

Table 1 provides descriptive statistics about exporters and incursions in our dataset (left panel)
and about the macroeconomic environment in Peru (right panel) during the sample period, using
annual data. The first column details the number of exporters each year. The second and third
columns display the number of incursions and re-entries, respectively. In total, during the sample
period (1997-2002) we identify 24, 855 incursions by 10, 071 unique firms and 1, 659 re-incursions by
1, 017 unique firms. The first four columns in the left panel show growing exporting activity in Peru
during the sample period. The last column shows the survival rate for each cohort of incursions in
a two-year horizon. The survival rate hovers around an average of 24.2%.

Table 1: Descriptive Statistics

Firms and Entries Macro Variables

Year Firms Incursions Re-entries
Incursions:

2-year surv. (%)
Exports

(US$ mill.)
GDP growth

(%)
RER
(%)

1997 3,775 4,081 0 23.6 6,825 6.5 2.3
1998 3,563 3,522 0 26.3 5,757 -0.4 4.1
1999 3,895 4,249 141 24.7 6,088 1.5 14.1
2000 4,017 4,537 348 22.3 6,955 2.7 2.7
2001 4,347 4,244 491 24.2 7,026 0.6 1.4
2002 4,685 4,222 679 24.7 7,714 5.5 1.7
2003 9,091 4.2 -1.1
2004 12,809 5.0 -2.8
2005 17,368 6.3 -1.8
2006 23,830 7.5 0.5
2007 28,094 8.5 -3.4
2008 31,018 9.1 -8.2

Total 28,098 24,855 1,659 24.2

Notes: Left panel based on Peruvian customs dataset (World Bank). First two columns of right panel based
on INEI. The real exchange rate (RER) multiplies nominal exchange rate by US PPI (BLS) and divides it by
Peruvian CPI (INEI). GDP growth and RER are expressed in annual variation (%). A higher RER means a more
depreciated Peruvian currency.

22



The right panel of the table displays summary indicators of the macroeconomic performance
of Peru. The information is provided for an expanded period that includes both the sample years
used to identify incursions (1997-2002) and the additional years used to compute survival (2003-
2008). The first column of this panel shows a strong positive trend for aggregate exports in Peru.
Similarly, the second column shows a strong positive trend in the evolution of GDP, particularly
in the later years of the sample. The last column displays the evolution of the real exchange rate,
which exhibits an accumulated depreciation of 29% during the period 1996-2002, followed by an
accumulated appreciation of 16% during the period 2002-2008. While our model does not account
for changes over time in potential export profitability due to changes in the real exchange rate, by
focusing on averages over a period that includes both appreciation and depreciation of the domestic
currency we hope to capture patterns in the data that approximate those that would arise in a fully
stable macroeconomic environment.

4.3 Results

The top part of Table 2 displays the estimation results. The parameters of the GBM are µ̂ = −0.017
and σ̂ = 0.081. These values imply that the normalized drift of the GBM is µ̂

σ̂ = −0.212, which
is considerably smaller than the method-of-moments estimates of −0.279 and −0.270 obtained by
Luttmer (2007) and Arkolakis (2016), respectively, for this ratio. Under the light of our model, a
normalized drift µ

σ closer to zero is required to explain the “flatness” of the survival profile, especially
for re-entrants, who are more sensitive to the GBM drift, as they include experienced firms. The
low survival rates are explained instead by the experimentation mechanism, which is governed by α
and λ.34 The estimate for the parameter of the Poisson process is λ̂ = 2.92. This estimate implies
that a firm that continuously exports has a 21.6% probability of becoming experienced within a
month. Finally, α̂ = 5.427, which implies a standard deviation of 0.28 for the profitability shifter
ψ. Taken together, the four parameters determine a value of 0.68 for the normalized threshold, θ̃∗.
This entry value implies that if the firm became experienced the instant it starts exporting, the
probability that it would decide to continue exporting the next instant would only be θ̃∗α = 12%.35

Furthermore, they imply that only around 40% of re-entrants are experienced. Having a substantial
share of inexperienced firms among re-entrants is necessary to explain that even re-entrants have a
low and flat survival profile.

The second part of Table 2 compares the data with the model predictions. Figure 5 provides a
visual representation of the same information. The model does an excellent job. In particular, it
predicts a low and flat survival profile for both entrants and re-entrants and an average gap of about
12 percentage points between both, as in the data. The average absolute discrepancy between data

34Indeed, in Section 4.4 we show that, in the absence of experimentation, µ
σ

needs to be twice as large to match the
low survival rates of exporters.

35This is an “instantaneous” probability of survival. However, some firms may exit the instant the shock hits them
but re-enter the market within the next year. When we aggregate instants into years, survival probabilities become
substantially larger than this “instantaneous” measure.
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Table 2: SMM Estimation results

Fixed parameters

r 0.1
ψm 1

Estimated parameters

µ -0.017
σ 0.081
λ 2.920
α 5.427

Survival probabilities

Panel A: Entrants

Model Data
Year 1 0.304 0.294
Year 2 0.219 0.242
Year 3 0.193 0.208
Year 4 0.182 0.185
Year 5 0.174 0.169

Panel B: Re-entrants

Year 1 0.446 0.406
Year 2 0.359 0.361
Year 3 0.320 0.334
Year 4 0.297 0.292
Year 5 0.279 0.285
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Figure 5: Survival profiles predicted by the model

and predictions is slightly above a percentage point, with the largest discrepancy in the first year
for re-entrants (44.4% in the model versus 40.6% in the data).

4.4 Models without uncertainty and experimentation

We compare the results of our baseline model with a benchmark model that keeps the assumption
of a GBM profitability process but without uncertainty or experimentation. It is easy to see why
this model is not a useful alternative. Since there are no incentives to incur losses by entering earlier
to experiment, both entrants and re-entrants enter and exit at θ̃∗ = 1. Thus, survival probabilities
are identical in both cases, which makes this model unable to explain fact 2. In fact, the benchmark
model is also unable to explain fact 1. The green-colored dashed line in Figure 1a (discussed in
Section 2) corresponds to the best prediction of the benchmark model. This prediction is obtained
by estimating the model with the SMM using only the survival profile of entrants {St}t=1,...,5. In
this case, the only parameter to estimate is the ratio µ̃ = µ

σ .36 Table 3 shows that the estimate of
this parameter (̂̃µ = −0.71) is much more negative than the one for this ratio obtained in the full
model. The table also presents the predicted survival rates using this estimate. These predictions
are depicted in Figure 1a. We can see that the model overpredicts survival rates at short horizons
while underpredicting them at longer horizons.

Next, we extend the benchmark model to include sunk costs (S). Sunk costs have been the
focus of most theoretical and empirical work on exporter dynamics (Baldwin and Krugman, 1989;
Dixit, 1989; Roberts and Tybout, 1997; Alessandria and Choi, 2007; Das et al., 2007; Impullitti et
al., 2013; Morales et al., 2019). More specifically, we can assume that whenever firms switch from
non-exporter to exporter in a given market for the first time, they must pay a sunk cost of S. Given
that incurring the sunk cost is an irreversible decision, firms only enter with profitability above the
exit threshold, which raises the probability of survival at short horizons relative to longer ones. This

36We could alternatively use the ten - both entrant and re-entrant - survival moments to estimate but prefer to
focus only on the five first-entry moments to give the benchmark model more flexibility to fit fact 1.
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Table 3: SMM estimation results
(Benchmark model)

Estimated parameter

µ/σ -0.71

Survival probabilities: Entrants

Model Data
Year 1 0.420 0.358
Year 2 0.265 0.266
Year 3 0.181 0.223
Year 4 0.128 0.196
Year 5 0.091 0.177

only exacerbates the inability of the benchmark model to fit the observed survival profile. Hence,
sunk costs do not help explain fact 1. Regarding fact 2, the model cannot explain it as it generates
equal survival probabilities for entrants and re-entrants.

In a more general case, firms could be required to pay only a fraction ϕ ∈ [0, 1] of the original
sunk cost in subsequent re-entries. This would generate an inaction region

[
θFT , θ̄FT

]
such that

firms start exporting when θ ≥ θ̄FT and stop exporting when θ ≤ θFT during their first entry,
while it would similarly generate an inaction region for re-entrants

[
θRE , θ̄RE

]
with θRE = θFT and

θ̄RE ≤ θ̄FT (with equality iff ϕ = 1). Still, as in the case with ϕ = 1 in the previous paragraph,
the fact that firms wait to enter until profitability is higher makes the survival profile steeper and
prevents the model from explaining fact 1. Regarding fact 2, re-entrants survive less than entrants
as their inaction region is smaller. This result is just the opposite to fact 2.37

5 Mechanisms

We have presented two facts about exporter survival and developed a model with uncertainty and
experimentation in export markets that naturally explains them. In this section, we provide further
evidence of the relevance of uncertainty and experimentation in the dynamics of firm exports by
associating variation in the parameter α to observed characteristics of products and markets.

We do not observe α. However, the magnitude of this parameter can be linked to observable
characteristics of products and export destinations. Since α governs the variance and positive
skewness of the shock, its magnitude captures the degree of uncertainty about the component of
export market profitability that can be resolved by experimenting. As discussed in Section 3,
possible sources are the need to adapt products to satisfy foreign demand idiosyncrasies and to
match with distributors who will push product sales. It is reasonable to assume that these sources
of uncertainty are more relevant for differentiated products than for homogeneous products. Thus,

37Note that fact 2 may explain why Das et al. (2007) find that sunk-costs fully depreciate (ϕ = 1). By having
entrants and re-entrants pay similar sunk costs, the estimated model might want to minimize the failure of the
sunk-cost model to explain fact 2.
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Figure 6: Survival profile by type of product

we expect a lower α and, hence, a lower survival probability for the former.
To test this implication, we classify all incursions in our database in either of two categories,

differentiated or homogeneous, following Rauch (1999).38 We first map export data classified at
the Harmonized System 10-digit level into Rev.2 SITC 4-digit categories using the United Nations
Statistics Division Conversion Tables. Then, we map the latter categories into one of our two
categories.39 Finally, we identify the category with the largest value of exports in the year of
entry and assign the incursion to that category. There are 14, 533 differentiated incursions and
9, 701 homogeneous incursions in our database. Figure 6a displays the survival profile for each
category. Consistent with the hypothesis that α is lower for differentiated products, these products
display uniformly lower survival rates. For example, the survival rate is more than six percentage
points lower in the first year after entry and more than four percentage points lower in the fifth
year. Similar results are obtained in a regression framework, where we can perform inference and
control for other covariates. We regress the survival status of each incursion-horizon combination on
dummies for horizon and a dichotomous variable for differentiated products. The results, displayed
in column 1 of Table A.2, show that the survival rate of differentiated products is significantly
lower than for homogeneous products. We also interact the differentiated dummy with horizon
dummies. Column 2 shows that the survival rate of incursions in differentiated products is lower
at all horizons. Columns 3 and 4 show that these results are not an artifact of composition effects.
The results are very similar when we replicate the regressions in the first two columns by adding a
full set of destination-year fixed effects.

The survival profile for exporters of differentiated goods relative to exporters of homogeneous
goods should also display the effects of uncertainty and experimentation in the case of re-entrants.

38We merge homogeneous and referenced-priced categories in Rauch (1999) into only one “homogeneous” category.
39The mapping from SITC to Rauch leaves 5.82% of the incursions unclassified. We reduce this proportion to

2.61% by assigning to unclassified SITC 4-digit categories the classification of similar SITC 4-digit categories. Of the
remaining unclassified instances, 52.47% are transactions without a reported HS code.
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Figure 7: Survival profile by distance (First-time entrants)

Although many of them have already learned the realization of α, a fraction of re-entrants still
behave as entrants and thus are subject to similar chances of early termination of their export expe-
riences. Consistent with this prediction, Figure 6b shows that the survival profile is uniformly lower
for exporters of differentiated goods than for exporters of homogeneous goods. Columns 5 to 8 in
Table A.2 replicate these results in a regression framework. The difference in survival rates between
differentiated and homogeneous goods is also statistically significant for re-entrants, although the
relationship is weaker at longer horizons. These results are not an artifact of composition effects
either, as including destination-year fixed effects yields very similar results.

The uncertainty surrounding export market profitability could also be hypothesized to vary
according to the distance to the destination. In the first place, neighboring countries are more likely
to have similar income levels and thus share similar consumption patterns. In the second place,
even controlling for income levels, demand idiosyncrasies are more likely to coincide the closer the
exporter and the importer are. In the third place, less distant countries are more likely to have a more
similar business culture that facilitates communication with distributors and anticipation of their
actions. As a result, we could expect a higher degree of uncertainty about export market profitability
in more distant destinations. Setting a smaller α for those destinations, the model predicts lower
survival probabilities in those cases. To assess this prediction, we divide export destinations into
three groups according to their distance from Peru. Short-distance destinations are those with a
distance smaller than 3, 424 km. Medium-distance destinations are those with a distance between
3, 424 km. and 10, 040 km. Long-distance destinations are those with a distance above 10, 040 km.
The cut-offs are chosen so that each distance group has an equal number of incursions. Figure 7a
displays the survival profile for each distance group in the case of differentiated goods. We can see
that the profile is uniformly lower the farther away is the destination. For example, one year after
entry, the survival rate for the long-distance group is six percentage points lower than for the short-
distance group, while five years after entry, the survival rate for the former group is four percentage
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points lower. Figure 7b displays analogous information in the case of homogeneous products, where
it is unclear whether distance should matter. In this case, we do not see lower survival rates in
more distant destinations. If anything, the opposite seems to be the case.

These results also arise in a regression framework where we can also control for distance as
a continuous variable, in addition to controlling for other covariates. The results are displayed in
Table A.3. In column 1, we regress survival on interactions of (log)distance with dummies indicating
whether the product is differentiated or homogeneous. Similar to the graphical results, the longer
the distance, the lower the survival rate for differentiated products. For homogeneous products, by
contrast, the result is just the opposite. Column 2 includes horizon-specific interactions with the
differentiated and homogeneous dummies, with similar results. These results barely change when
we include year fixed effects (columns 3 and 4).

In sum, the results of this section show that reasonable assumptions about how α varies across
products and destinations yield predictions consistent with the data. These results support the
notion that uncertainty and experimentation are crucial features in the dynamics of firm exports.

6 Other relevant exporter dynamics moments

While we have focused so far on facts 1 and 2, a specific collection of survival moments, the literature
has highlighted many other relevant moments that characterize exporter behavior. This section
studies our model’s ability to explain those other moments. We organize them into three classes.
The first class includes additional moments related to exporter survival and re-entry. The second
class comprises moments related to export growth. The third class contains moments pertaining to
survival and growth conditional on size. For each of these classes, we assess (a) the model’s ability
to explain the moments and (b) the additional assumptions, if any, required to make predictions
about them.

6.1 Survival and re-entry moments

Although our model was designed to explain facts 1 and 2, Proposition 2 implies that it should also
be able to predict any moment that belongs to class M1, which includes all those that aggregate over
subsets of the “extensive margin” of exporter behavior (see the discussion in Section 3.3). Many
survival and re-entry moments used in the literature belong to this class. Thus, to the extent the
model’s ability to match our facts stems from a more profound ability to explain the entire extensive
margin, it should also match those other moments.

A common practice in the literature is to define “continuous survival” measures based on unin-
terrupted export experiences (e.g. Eaton et al. (2008) and Ruhl and Willis (2017), among others).
For example, a firm that exports to a market for the first time at t = 0, does not export at t = 1,
and exports again at t = 2 is not considered a survivor at t = 2 under this alternative definition
while it is a survivor under the definition used in this paper. The top panel in Table 4 computes
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continuous survival probabilities (i.e. imposing the additional requirement of uninterrupted export
spells). Columns 1 and 2 compare the probability of continuously surviving until year t given
that the firm entered at t = 0 in the model and in the data. The model does an excellent job
matching these moments, with an average discrepancy of one percentage point. Columns 3 and 4
similarly compare “conditional survival” probabilities, which capture the probability of surviving at
t conditional on continuous survival until t− 1 (i.e. the complement of the hazard rate). Although
conditional survival is just a function of continuous survival, which is matched quite accurately, the
discrepancies are larger as this measure involves divisions by small numbers.40

Pervasive re-entry in export markets is a crucial feature of exporter dynamics. Like survival,
re-entry is entirely determined by the extensive margin. That is, once we know the export status
of a firm incursion along its trajectory, we also know the probability of re-entering the market over
any period after exit. We compute two re-entry moments. First, we compute the share of firms
that ever re-enter up to year tX +T , where tX is the time of the first exit (note T ≥ 2 by definition
of exit). The first two columns in the bottom panel of Table 4 report the results. In the data,
about 10% of exiters have re-entered the market within two years, with that number increasing to
20% within five years. The model matches these numbers very well. It slightly underestimates the
extent of re-entry by two percentage points, mainly driven by too little early re-entry. Second, we
compute the probability of exporting in period tX + T and report the model and data results in
the last two columns of the table. In the data, the share of exiters at tX that export in any of the
next five years hovers around 9%. The model also matches this feature of the data well, with the
main discrepancy for T = 2, where, by definition, this share coincides with the previous re-entry
measure.

Taken together, these facts suggest that despite the parsimony of the model, it does a very good
job explaining an important class of moments related to survival and re-entry, which only depend
on the extensive margin of exporter behavior.41

6.2 Export growth moments

Another class of moments (M2) studied in the exporter dynamics literature relates to growth in
export sales. As opposed to moments based on the extensive margin, predictions on export growth
require additional assumptions. In particular, we need assumptions that allow us to map profitability
(θ) onto export sales. This can be done easily by assuming CES demand and interpreting θ as
productivity or quality (see footnote 20), which is our approach in this section. More sophisticated
models may imply a richer mapping between profitability and sales and, thus, a better ability to

40In Appendix F, we provide an alternative estimation of the model that adds these conditional survival moments
to the estimation strategy. The model’s ability to explain these moments improves considerably at the expense of
slightly worsening the fit for the re-entrant survival profile (from a 1.3 percentage point average deviation to 2.7).

41One caveat is that the literature typically focuses on annual data based on calendar years instead of defining
firm-market specific years as we do here. In Appendix B.2, we show the results using this alternate way of aggregating
shipments. They are similar, except that (both in the model and the data) survival rates are larger because of
time-aggregation issues, especially in the first year.

30



Table 4: Other moments: Extensive margin

A: Other survival measures (entry: year 0)

Continuous survival Conditional survival
Horizon Model Data Model Data

Year 2 0.169 0.185 0.558 0.629
Year 3 0.124 0.133 0.736 0.718
Year 4 0.105 0.104 0.851 0.784
Year 5 0.094 0.086 0.893 0.825

B: Moments conditional on exit (exit: year 0)

Re-entry Survival
Horizon Model Data Model Data

Year 2 0.075 0.097 0.075 0.097
Year 3 0.120 0.147 0.089 0.097
Year 4 0.153 0.179 0.090 0.092
Year 5 0.178 0.200 0.090 0.089

explain export growth moments. However, our purpose here is to assess how far this restricted
version of the model can go in explaining the moments in M2.

Setting t0 as the entry year of the first-time entrant, we define growth rates as the log-difference
in accumulated export sales during one year, i.e. ln(salest0+T ) − ln(salest0+T−1), and compute its
mean, median and standard deviation for all firms that are alive at both t0 + T and t0 + T − 1.42

Panel A in Table 5 reports the results. Let us focus on the model predictions first. Although known
results from the firm and exporter dynamics literature predict larger growth rates in earlier periods
due to strong selection forces, here a countervailing “exiting partial-year” effect arises because a
large fraction of surviving firms - i.e. those for whom export growth can be computed - exit the
market sometime along the exiting year accumulating fewer sales. This countervailing effect appears
to dominate the unconditional export growth prediction in year 1 for the mean, albeit not for the
median. For the mean, we can see in the table that, contrary to the standard prediction, the model
predicts the lowest growth rate for that year - a negative one. From year 2 onwards, however, the
standard effect prevails. To explore this issue further, in panel B we report the growth rate in the
number of shipments, which we take as a proxy for the model counterpart of the “amount of time” a
firm spends over the threshold.43 Consistent with this explanation, panel B shows a large negative

42In Appendix B.3, we present all the results in this section using annual data based on calendar years. Since our
model is set in continuous time, it provides a natural lab to think about time-aggregation issues. To compare with
calendar-year data, we simulate a random variable in our model that determines the entry moment of a firm in a
given calendar year. The results are similar, except that in the first year (from year 0 to year 1) we observe, both
in the model and in the data, the standard partial-year effect pointed out by Bernard et al. (2017): growth rates are
abnormally high since, everything else equal, firms export during a shorter amount of time in year 0.

43More precisely, in the model we compute ln(
∫ t0+T+2
t0+T+1 y(t)dt)−ln(

∫ t0+T+1
t0+T y(t)dt) and in the data

ln(
∑t0+T+2

t=t0+T+1shipmentst)−ln(
∑t0+T+1

t=t0+T shipmentst).
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Table 5: Other moments: Growth rates

A: Unconditional sales growth rates (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 0.030 −0.228 0.121 −0.178 1.815 1.732
Year 2 0.095 −0.008 0.018 0.030 1.458 1.532
Year 3 0.074 0.021 0.010 0.038 1.354 1.565
Year 4 0.052 0.058 0.005 0.075 1.263 1.501
Year 5 0.031 0.105 0.003 0.116 1.224 1.453

B: Unconditional shipment growth rates (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 −0.071 −0.189 0.018 −0.0727 1.781 0.990
Year 2 0.055 −0.039 0 0 1.431 0.969
Year 3 0.055 −0.024 0 0 1.330 0.952
Year 4 0.040 −0.018 0 0 1.242 0.900
Year 5 0.023 0 0 0 1.204 0.896

C: Sales growth rates conditional on surviving at least until year 5 (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 0.539 0.145 0.302 0.122 1.260 1.381
Year 2 0.262 0.216 0.036 0.201 1.019 1.315
Year 3 0.066 0.103 0.009 0.127 0.810 1.289
Year 4 0.007 0.129 −0.001 0.117 0.746 1.286
Year 5 −0.118 0.016 −0.010 0.084 0.867 1.185
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growth in the mean number of shipments during the first year.
The countervailing exiting partial-year effect also holds in the data for both mean and median

growth rates. In fact, in the data this is true for both the mean and median (panel A), and
also appears to be driven by the unconditional shipments growth rates (panel B). Nevertheless, in
contrast to the theoretical predictions, in the data this effect appears to prevail not only in year 1
but also in all subsequent years. This mismatch points to the restricted model’s limits and suggests
the need for richer demand features to fit better export growth data.44

The model correctly predicts the decline in the standard deviation of growth rates as the horizon
lengthens (the last two columns in panel A). This result uncovers a novel mechanism affecting the
volatility of firms’ growth rates, especially for young and small firms, who are close to the export
threshold. While in continuous time selection implies smaller volatility for instantaneous growth
rates, a point forcefully made by Arkolakis (2016), annual growth rates feature a countervailing
force due to time aggregation: firms close to the threshold have a large volatility because they are
not active during the entire year. This force introduces a new “intra-year” extensive margin effect
that increases the volatility of their total sales. This effect is stronger at shorter horizons, when
more firms are close to the threshold, but it also increases volatility levels in general. Whereas
in panel A the model predicts quite well the standard deviations observed in the data, it strongly
overpredicts them in panel B. In Appendix G, we show that the latter is due to the continuous-time
formulation, which exaggerates the quantitative importance of the intra-year extensive margin.45

Panel C reports sales growth rate moments conditional on surviving at least five years after
entry, in the spirit of Bernard et al. (2017). In the model, sales growth rates decrease over time
because of selection. In the data, however, the trend is much less clear, with the second year (and
the fourth year in the case of the mean) featuring a higher growth rate than the preceding year.
In Appendix H, we also compute, more generally, growth rate moments conditional on export-spell
length, e.g. firms surviving exactly for T years, following Fitzgerald et al. (2023). The results are
fairly similar: the model predicts strong growth at the beginning and a significant drop in the last
period of export activity, leading to hump-shapes for T > 3 (see Figure H.1 in Appendix H). In the
data, the strong growth at the beginning is absent.46

Overall, the results for the class of moments M2 suggest that, while the restricted model can
capture some broad features of exporter’s growth rates, the data rejects the joint assumption of CES
demand and θ representing productivity or quality. Instead, the results suggest that one should

44Alternatively, the model could be enriched with other features. Appendix G, for example, discusses an extension
with lumpiness in shipments (discussed later in footnote 45). Table G.2 shows that introducing this extension greatly
improves the model fit.

45More precisely, we enrich the model by assuming firms cannot export at every instant; rather, they can only
export when they are hit by an “export opportunity” shock, which occurs with intensity η. By choosing η to get a
reasonable number of shipments per year, the standard deviation of shipment growth rates becomes much closer to
the data. Naturally, the modified model now comes short of explaining the overall volatility of sales. This suggests
that another economic force may be at play in the intensive margin, e.g. marketing costs as in (Arkolakis, 2010).

46With annual data based on calendar years, we get a hump shape driven by the well-known partial-year effect,
both in the model and the data (see Appendix H).
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entertain theories that make sales and shipments lag behind profitability. For example, barriers to
how fast agents may find new customers, as in Fitzgerald et al. (2023) and Eaton et al. (2021), or
how fast firms can adjust their production process to satisfy demand in export markets, as in Rho
and Rodrigue (2016). We leave such extensions for future research.

6.3 Moments conditional on size

Finally, a third class of moments we consider (M3) includes survival and growth moments conditional
on size. This class of moments requires specifying, on top of the baseline model, not only a specific
mapping between sales and profitability (necessary to obtain the moments in M2) but also the
distribution of the heterogeneous parameters κ and F in the population of firms. In other words,
our model does not deliver predictions about this class of moments unless we are willing to make
these additional distributional assumptions, which are not required to yield predictions about M1

or M2. In this section, we keep the assumption of CES demand and assume, in addition, that
both κ and F are common across firms. As in Section 6.2, this exercise aims to assess how far this
restricted version of the model can go in explaining the moments in M3.

Table 6 shows survival and growth moments conditional on size (quartiles of the firm size
distribution) for the first-year of first-time entrants (panel A) and for all firms at the steady state
(panel B).47 Even this restricted version of the model - again, with CES demand, θ representing
productivity or quality, and homogeneous κ and F - captures some broad qualitative features of
the data. First, survival increases with size for first-time entrants and firms at the steady state.
Second, both mean and standard deviation of sales growth rates decrease with size.48

Quantitatively, despite a few specific instances where mismatches are considerable, even this
version of the model where we shut down heterogeneity in κ and F delivers predictions that are
not far from the data, particularly in the case of survival and the standard deviation of growth
rates. However, consistent with the results in the previous section, the predictions of this restricted
model for mean growth rates are the least accurate. In particular, the model predicts a stronger
relationship with size than the data, where this relationship could be weaker as size quartiles are also
determined by other firm characteristics that correlate with size but are unrelated to profitability,
e.g. fixed-cost heterogeneity or firm-destination demand shifters κ.49

47For the steady-state computation, we assume that every year Nt firms are born and that Nt+1 = gBNt where
gB is chosen to match the average growth rate in the number of exporters we see in our database (4.32%), as in
Arkolakis (2016). We simulate firms for T = 20 years. Since we do not know the time of the year for the first entry,
we simulate a random variable that determines it for each firm. In the data counterpart, incumbents’ survival and
growth moments are computed using annual data based on calendar years.

48There is an exception in that mean growth rates are slightly larger in the fourth quartile than in the third. In
unreported results, we verify that the top decile drives the non-monotonicity. The reason is related to time aggregation:
as firms become very large, they are far from the threshold and, therefore, are unlikely to display fewer shipments in
the year due to exit.

49The literature often interprets the statistical significance of both size and age as explanatory variables for survival
and export growth as evidence of experimentation or other forms of demand learning (see, e.g. Arkolakis et al. (2018)).
Our results here suggest this class of moments should be interpreted with caution. Even in a benchmark model without
experimentation, if size is an imperfect proxy for firm profitability θ̃ due to variation in static parameters such as F
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Table 6: Moments conditional on size

A: First-year (first-time entrants)

Survival Sales growth: mean Sales growth: std. dev.
Quartile Model Data Model Data Model Data

1 0.185 0.118 2.161 1.256 2.004 2.620
2 0.189 0.220 0.242 −0.123 1.650 1.518
3 0.241 0.320 −0.513 −0.343 1.634 1.562
4 0.602 0.520 −0.474 −0.538 1.310 1.469

B: Steady state

Survival Sales growth: mean Sales growth: std. dev.
Quartile Model Data Model Data Model Data

1 0.412 0.314 2.248 1.116 1.994 2.145
2 0.423 0.486 0.254 0.182 1.659 1.423
3 0.699 0.620 −0.374 −0.033 1.395 1.377
4 0.999 0.797 −0.092 −0.218 0.378 1.208

Overall, taken together, the results of this section support the idea of a hierarchy of moments,
according to which it makes sense to focus first on survival probabilities upon entry (as well as
any other moments based on the extensive margin of survival). These survival moments are more
“robust” in that they only restrict the dynamics of the profitability process while allowing for
substantial flexibility in other model features we know little about. In particular, by focusing on
survival, we do not need to take a stand on demand characteristics that determine the mapping
between sales and profitability or on firm-destination fixed characteristics, such as demand-shifters
(e.g. quality) or fixed costs, which have been shown to be relevant dimensions of heterogeneity in
earlier work (Eaton et al., 2011).

7 Concluding remarks

This paper develops a model of exporter dynamics with uncertainty and experimentation. The
model is parsimonious and has tractable features that allow us to characterize the solution to
the firm’s problem sharply. The model can rationalize two central facts about export survival in
foreign markets. The first fact is that the survival profile of export entrants is low and flat. The
second is that re-entrants to foreign markets display higher survival rates than first-time entrants.
We estimate the model, show that it can explain these facts qualitatively and quantitatively, and
study its implications for a rich set of exporter dynamics facts. The importance of uncertainty and
experimentation in exporter dynamics is further supported by evidence that exploits hypothesized
variation in the degree of uncertainty about foreign market profitability across products and distance

and κ, exporter age will pick up the residual variation coming from θ̃.
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to the destination.
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Appendix (for online publication)

A Facts in regression framework

In this section, we present the main empirical results of the paper in regression form to show that
the results do not rely on composition effects. Note that since years are firm-market-specific, they
involve more than one calendar year. In each case, we attribute the calendar year with the largest
overlap, e.g. if the firm-market-specific year is May (October) 1st 1997 - April (September) 30th
1998, then we attribute the year 1997 (1998) for the purpose of the year fixed effect. All regressions
have standard errors clustered at the firm level to allow for correlation over time (i.e. different
export experiences of a firm) and across markets.

Table A.1: Facts 1 and 2 controlling for composition

(1) (2) (3) (4)
Entrants Re-entrants

Constant 0.294∗∗∗ 0.294∗∗∗

(0.00455) (0.00455)

Year 2 -0.052∗∗∗ -0.051∗∗∗ -0.052∗∗∗ -0.051∗∗∗

(0.00282) (0.00355) (0.00282) (0.00354)

Year 3 -0.086∗∗∗ -0.083∗∗∗ -0.086∗∗∗ -0.083∗∗∗

(0.00330) (0.00520) (0.00330) (0.00520)

Year 4 -0.109∗∗∗ -0.104∗∗∗ -0.109∗∗∗ -0.105∗∗∗

(0.00368) (0.00670) (0.00368) (0.00669)

Year 5 -0.125∗∗∗ -0.120∗∗∗ -0.125∗∗∗ -0.120∗∗∗

(0.00380) (0.00827) (0.00380) (0.00821)

Year 1*Re-ent. 0.112∗∗∗ 0.100∗∗∗

(0.01358) (0.01365)

Year 2*Re-ent. 0.119∗∗∗ 0.108∗∗∗

(0.01346) (0.01348)

Year 3*Re-ent. 0.126∗∗∗ 0.115∗∗∗

(0.01334) (0.01344)

Year 4*Re-ent. 0.108∗∗∗ 0.092∗∗∗

(0.01279) (0.01313)

Year 5*Re-ent. 0.116∗∗∗ 0.102∗∗∗

(0.01322) (0.01358)

Destination-year fixed effect No Yes No Yes

Product fixed effect No Yes No Yes

Observations 124275 123934 132570 132233
R2 0.012 0.057 0.016 0.060
Notes: Standard errors are clustered at the firm level. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A.2: Effect of type of product on survival

(1) (2) (3) (4) (5) (6) (7) (8)
Entrants Re-entrants

Differentiated -0.048∗∗∗ -0.056∗∗∗ -0.038∗ -0.048∗∗

(0.00868) (0.00836) (0.02164) (0.02322)

Year 1*Diff. -0.051∗∗∗ -0.060∗∗∗ -0.056∗∗ -0.084∗∗∗

(0.00929) (0.00890) (0.02649) (0.02859)

Year 2*Diff. -0.054∗∗∗ -0.062∗∗∗ -0.056∗∗ -0.056∗

(0.00950) (0.00910) (0.02687) (0.02902)

Year 3*Diff. -0.048∗∗∗ -0.055∗∗∗ -0.019 -0.031
(0.00951) (0.00927) (0.02768) (0.02967)

Year 4*Diff. -0.049∗∗∗ -0.057∗∗∗ -0.040 -0.049∗

(0.00950) (0.00939) (0.02736) (0.02890)

Year 5*Diff. -0.037∗∗∗ -0.045∗∗∗ -0.018 -0.018
(0.00957) (0.00953) (0.02808) (0.02932)

Destination-year fixed effect No No Yes Yes No No Yes Yes

Observations 121270 121270 120931 120931 8175 8175 8032 8032
R2 0.015 0.015 0.034 0.034 0.011 0.011 0.089 0.089
Notes: All regressions include horizon dummies. Standard errors are clustered at the firm level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A.3: Effect of distance on survival

(1) (2) (3) (4)
Log(dist)*Diff. -0.024∗∗∗ -0.024∗∗∗

(0.00449) (0.00450)

Log(dist)*Homog. 0.015∗∗ 0.015∗∗

(0.00610) (0.00613)

Year 1*Diff.*Log(dist) -0.033∗∗∗ -0.033∗∗∗

(0.00565) (0.00566)

Year 2*Diff.*Log(dist) -0.021∗∗∗ -0.021∗∗∗

(0.00549) (0.00550)

Year 3*Diff.*Log(dist) -0.022∗∗∗ -0.022∗∗∗

(0.00514) (0.00514)

Year 4*Diff.*Log(dist) -0.021∗∗∗ -0.021∗∗∗

(0.00519) (0.00520)

Year 5*Diff.*Log(dist) -0.023∗∗∗ -0.023∗∗∗

(0.00502) (0.00503)

Year 1*Homog.*Log(dist) 0.016∗∗ 0.016∗∗

(0.00706) (0.00709)

Year 2*Homog.*Log(dist) 0.013∗ 0.014∗∗

(0.00704) (0.00709)

Year 3*Homog.*Log(dist) 0.016∗∗ 0.017∗∗

(0.00724) (0.00728)

Year 4*Homog.*Log(dist) 0.015∗∗ 0.015∗∗

(0.00674) (0.00677)

Year 5*Homog.*Log(dist) 0.015∗∗ 0.015∗∗

(0.00687) (0.00689)

Year fixed effect No No Yes Yes

Observations 120030 120030 120030 120030
R2 0.017 0.017 0.017 0.017
Notes: All regressions include horizon dummies, a differentiated good
dummy, and the interaction between a differentiated good dummy and
horizon dummies (omitted). Standard errors are clustered at the firm
level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B Annual data based on calendar years

In this section, we replicate the main facts of our paper using annual data based on calendar years
instead of our firm-specific definition of years based on the moment of the first shipment. We
consider entries (firm-market level) between 1997 and 2003. An entry in year t is considered a
“re-entry” if the firm has exported at least one year to the market under consideration since 1993
and did not export at t − 1. This alternative measure is subject to time-aggregation issues (e.g.
firms may enter in different months), but it has the benefit that it can be defined for incumbents
as well, increasing sample size.

Table B.1: Descriptive Statistics

Year Firms Incursions Re-entries
Incursions:

2-year surv. (%)

1997 3,775 4,081 700 25.7
1998 3,563 3,522 729 29.0
1999 3,895 4,249 1,102 27.5
2000 4,017 4,537 1,106 24.2
2001 4,347 4,244 1,175 25.9
2002 4,685 4,222 1,338 27.3
2003 5,094 4,836 1,458 27.4

Total 28,098 29,691 7,608 26.6

Notes: Based on Peruvian customs dataset (World Bank).

In the model predictions, we take into account partial year effects by simulating a random
variable that determines the time of the year that the firm enters. We assume this random variable
is uniformly distributed over the year. Overall, we find that the partial-year effect substantially
affects all moments, including survival probabilities, especially during the first year. Our partial-
year correction moves moments in the same direction as in the data in all cases, but it exaggerates
the magnitude of these movements in the first year.
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Figure E.1: Survival profile by type of product
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Figure E.2: Survival profile by distance (First-time entrants)
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B.1 Main Facts

Tables B.2 to B.4, presented below, replicate tables A.1 to A.3 using annual data based on calendar
years and all re-entrants, regardless of whether we observe their first-time entry.

Table B.2: Facts 1 and 2 controlling for composition

(1) (2) (3) (4)
Entrants Re-entrants

Constant 0.357∗∗∗ 0.357∗∗∗

(0.00402) (0.00402)

Year 2 -0.091∗∗∗ -0.094∗∗∗ -0.091∗∗∗ -0.095∗∗∗

(0.00294) (0.00342) (0.00294) (0.00338)

Year 3 -0.134∗∗∗ -0.137∗∗∗ -0.134∗∗∗ -0.140∗∗∗

(0.00338) (0.00468) (0.00338) (0.00448)

Year 4 -0.161∗∗∗ -0.163∗∗∗ -0.161∗∗∗ -0.168∗∗∗

(0.00364) (0.00590) (0.00364) (0.00555)

Year 5 -0.178∗∗∗ -0.181∗∗∗ -0.178∗∗∗ -0.188∗∗∗

(0.00384) (0.00740) (0.00384) (0.00682)

Year 1*Re-ent. 0.097∗∗∗ 0.084∗∗∗

(0.00722) (0.00733)

Year 2*Re-ent. 0.111∗∗∗ 0.099∗∗∗

(0.00758) (0.00754)

Year 3*Re-ent. 0.120∗∗∗ 0.108∗∗∗

(0.00777) (0.00775)

Year 4*Re-ent. 0.124∗∗∗ 0.111∗∗∗

(0.00809) (0.00804)

Year 5*Re-ent. 0.123∗∗∗ 0.111∗∗∗

(0.00822) (0.00811)

Destination-year fixed effect No Yes No Yes

Product fixed effect No Yes No Yes

Observations 148455 148099 186495 186145
R2 0.022 0.066 0.030 0.068
Notes: Standard errors are clustered at the firm level. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table B.3: Effect of type of product on survival

(1) (2) (3) (4) (5) (6) (7) (8)
Entrants Re-entrants

Differentiated -0.055∗∗∗ -0.065∗∗∗ -0.042∗∗∗ -0.048∗∗∗

(0.00788) (0.00767) (0.01300) (0.01317)

Year 1*Diff. -0.064∗∗∗ -0.078∗∗∗ -0.064∗∗∗ -0.077∗∗∗

(0.00801) (0.00791) (0.01341) (0.01361)

Year 2*Diff. -0.061∗∗∗ -0.070∗∗∗ -0.051∗∗∗ -0.059∗∗∗

(0.00875) (0.00853) (0.01461) (0.01500)

Year 3*Diff. -0.052∗∗∗ -0.061∗∗∗ -0.039∗∗ -0.044∗∗∗

(0.00900) (0.00880) (0.01528) (0.01551)

Year 4*Diff. -0.055∗∗∗ -0.063∗∗∗ -0.037∗∗ -0.039∗∗

(0.00899) (0.00888) (0.01610) (0.01640)

Year 5*Diff. -0.045∗∗∗ -0.053∗∗∗ -0.019 -0.021
(0.00904) (0.00896) (0.01643) (0.01668)

Destination-year fixed effect No No Yes Yes No No Yes Yes

Observations 144910 144910 144555 144555 37145 37145 36903 36903
R2 0.026 0.026 0.045 0.045 0.015 0.015 0.050 0.051
Notes: All regressions include horizon dummies. Standard errors are clustered at the firm level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table B.4: Effect of distance on survival

(1) (2) (3) (4)
Log(dist)*Diff. -0.026∗∗∗ -0.026∗∗∗

(0.00414) (0.00414)

Log(dist)*Homog. 0.009 0.009
(0.00559) (0.00561)

Year 1*Diff.*Log(dist) -0.037∗∗∗ -0.036∗∗∗

(0.00527) (0.00528)

Year 2*Diff.*Log(dist) -0.024∗∗∗ -0.024∗∗∗

(0.00502) (0.00502)

Year 3*Diff.*Log(dist) -0.021∗∗∗ -0.021∗∗∗

(0.00504) (0.00505)

Year 4*Diff.*Log(dist) -0.020∗∗∗ -0.020∗∗∗

(0.00480) (0.00481)

Year 5*Diff.*Log(dist) -0.028∗∗∗ -0.028∗∗∗

(0.00467) (0.00467)

Year 1*Homog.*Log(dist) -0.006 -0.006
(0.00645) (0.00643)

Year 2*Homog.*Log(dist) 0.017∗∗∗ 0.018∗∗∗

(0.00665) (0.00669)

Year 3*Homog.*Log(dist) 0.007 0.007
(0.00660) (0.00663)

Year 4*Homog.*Log(dist) 0.012∗ 0.012∗

(0.00650) (0.00653)

Year 5*Homog.*Log(dist) 0.012∗ 0.012∗

(0.00664) (0.00666)

Year fixed effect No No Yes Yes

Observations 143345 143345 143345 143345
R2 0.028 0.028 0.028 0.028
Notes: All regressions include horizon dummies, a differentiated good
dummy, and the interaction between a differentiated good dummy and
horizon dummies (omitted). Standard errors are clustered at the firm
level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In Table B.5, we show the annualized version of the ten moments that constitute facts 1 and
2 (restricted to first-time re-entrants to isolate the implications of partial-year effects) and the
corresponding model predictions using our baseline estimates.

While the partial-year effect is often discussed in relationship with growth rates (Bernard et
al., 2017), we show that survival rates are also substantially affected. Indeed, first-year survival
rates in the first year are about 5 percentage points higher both for first-time entrants and for
re-entrants, as it is easier to survive after a month than it is to survive after an entire year. The
effect gets smaller, but it is still present on longer horizons. The model also predicts higher survival
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Table B.5: Survival probabilities: Annual data

Panel A: Entrants
Model Data

Year 1 0.498 0.357
Year 2 0.252 0.266
Year 3 0.203 0.223
Year 4 0.186 0.196
Year 5 0.177 0.179

Panel B: Re-entrants
Model Data

Year 1 0.563 0.454
Year 2 0.370 0.373
Year 3 0.322 0.332
Year 4 0.292 0.302
Year 5 0.273 0.285

probabilities but substantially overstates the partial-year effect during the first year. Since our
model is cast in continuous time and firms make decisions instant-by-instant, the model does not
include any reason why shipments may be spread out over time, such as inventory management by
importers (Alessandria et al., 2010). This makes firms entering late into the year extremely likely
to survive. Indeed, in the model, a firm entering in December has an 87% probability of surviving,
while a firm entering in January survives with 31% probability. Our model is better suited for
moments aggregated at a frequency where the natural delay in shipments matters less, which is
why we constructed firm-market-specific years in our main analysis.50 The model does an excellent
job at horizons from year 2 onwards.

B.2 Other extensive-margin moments

We re-do here the analysis in Section 6.1 with annual data. The results are similar, except that
continuous survival and the extent of re-entry are slightly larger, both in the model and in the
data. The conditional survival in year 2 is farther from the data, but this mainly reflects that our
model exaggerates the partial-year effect, which leads us to overestimate survival in year 1 (the
denominator used to compute conditional survival).

50See also Appendix G for a model with lumpiness.
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Table B.6: Other moments: Extensive margin. Annual data.

A: Other survival measures (entry: year 0)

Continuous survival Conditional survival
Horizon Model Data Model Data

Year 2 0.2072 0.208 0.416 0.582
Year 3 0.1348 0.146 0.651 0.701
Year 4 0.1092 0.111 0.810 0.763
Year 5 0.0957 0.091 0.877 0.818

B: Moments conditional on exit (exit: year 0)

Re-entry Survival
Horizon Model Data Model Data

Year 2 0.083 0.108 0.083 0.108
Year 3 0.131 0.159 0.095 0.104
Year 4 0.165 0.192 0.093 0.099
Year 5 0.190 0.215 0.092 0.096

B.3 Growth rate moments

We re-do the analysis in Section 6.2 with calendar-year annual data. The results are similar, except
for a sizeable partial year effect in year 1. Similar to the results on survival, our model also predicts
a partial-year effect that is too large for growth. The fit to the survivors (i.e. those surviving at
least six years) is now closer to the data, which is also monotonically decreasing on the horizon.
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Table B.7: Other moments: Growth rates. Annual data.

A: Unconditional sales growth rates (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 0.870 0.357 0.789 0.303 2.049 1.811
Year 2 0.032 -0.025 0.038 0.021 1.609 1.566
Year 3 0.082 0.010 0.012 0.049 1.406 1.500
Year 4 0.057 0.023 0.007 0.057 1.294 1.419
Year 5 0.029 0.090 0.004 0.108 1.249 1.496

B: Unconditional shipment growth rates (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 0.793 0.301 0.693 0.154 2.015 1.053
Year 2 -0.038 -0.035 0.000 0.000 1.578 0.979
Year 3 0.054 -0.030 0.000 0.000 1.380 0.946
Year 4 0.042 -0.027 0.000 0.000 1.272 0.916
Year 5 0.019 -0.003 0.000 0.000 1.230 0.881

C: Sales growth rates conditional on surviving at least until year 5 (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 1.576 0.799 1.240 0.704 1.728 1.600
Year 2 0.350 0.267 0.084 0.214 1.118 1.304
Year 3 0.122 0.147 0.015 0.151 0.904 1.225
Year 4 0.022 0.073 0.001 0.096 0.798 1.101
Year 5 -0.123 0.008 -0.010 0.079 0.910 1.186

B.4 Moments conditional on size

We re-do here the analysis in Section 6.3 with calendar-year annual data. The effect of size on
survival is smaller, potentially because many small firms are now firms that enter late into the year
and are very likely to survive. Indeed, according to the model, firms in the lowest quartile survive
more than firms in the second quartile. The relationship with size is also weaker in the data, but
the ranking is not reversed. As argued before, our partial-year-effect correction in the model for
annual data based on calendar years seems to overcorrect this problem. As expected, the partial
year effect also shifts upwards growth rates, which are now monotonic even in the model. In both
model and data, the relationship between standard deviation and size becomes weaker, as firms
may now be small because they enter late into the year.
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Table B.8: Moments conditional on size. Annual data.

First-year (first-time entrants)

Survival Sales growth: mean Sales growth: std. dev.
Quartile Model Data Model Data Model Data

1 0.459 0.207 3.000 1.662 1.894 2.507
2 0.440 0.305 1.005 0.443 1.600 1.470
3 0.461 0.383 0.155 0.252 1.568 1.518
4 0.630 0.534 -0.251 -0.124 1.454 1.595
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C Robustness: Other re-entrant definitions

In this section, we show the robustness of our main fact - that re-entrants survive less than first-time
entrants - to several definitions of re-entrants. One worry is that the fact that shipments are discrete
may lead us to falsely consider “re-entrants” firms that were not observed to export for longer than a
year, but rather than having exited the market, the reason for their apparent inactivity is that they
performed concentrated shipments. To address this concern, we study an alternative definition of re-
entrants based on the time elapsed between re-entry and the last shipment before exit. Specifically,
we call a shipment a “re-entry” if more than X months have passed since the previous shipment,
where X = 12, 18, 24 (we also present results with annual data based on calendar years in Section
B.1).

Tables C.1, C.2 and C.3 show the results with raw data. We have also verified that the results
controlling for composition are similar (analogously to Table A.1). We conclude that it is very
unlikely that the infrequent nature of shipments drives fact 2.

Table C.1: Survival Probabilities (Raw Data, 12 Months)

Horizon First-time entrants Re-entrants
1 0.2941 0.4294
2 0.2423 0.3722
3 0.2080 0.3416
4 0.1854 0.3146
5 0.1691 0.2975

Table C.2: Survival Probabilities (Raw Data, 18 Months)

Horizon First-time entrants Re-entrants
1 0.2941 0.4029
2 0.2423 0.3496
3 0.2080 0.3205
4 0.1854 0.2999
5 0.1691 0.2845

Table C.3: Survival Probabilities (Raw Data, 24 Months)

Horizon First-time entrants Re-entrants
1 0.2941 0.3845
2 0.2423 0.3338
3 0.2080 0.3108
4 0.1854 0.2897
5 0.1691 0.2716
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D General model, proofs and derivations

D.1 Derivation of HJB equations

The inexperienced firm An experienced firm receives profits given by πe (θt;ψ) = ψκθt − F =
F
(
ψθ̃t − 1

)
if it exports and 0 otherwise. The value of an experienced firm (Ve) at t = 0 is the

solution to the following problem:

Ve(θ̃0;ψ) = sup
{ye(θ̃t)}∞

t=0

E
(∫ ∞

0
e−rtF

(
ψθ̃t − 1

)
ye(θ̃t)dt

)

subject to (1) with θ̃0 given, where r is the discount rate.

Suppose a firm follows any constant policy ye ∈ {0, 1} during an interval of time [t, t + τ ].
Exploiting the stationarity of the problem, we can write the problem recursively as

Ve(θ̃t;ψ) = max
ye∈{0,1}

E
(∫ τ

0
e−rsF

(
ψθ̃t+s − 1

)
yeds+ e−rτVe(θ̃t+τ ;ψ)

)
.

Taking the limit τ → 0 and rearranging yields (2).

The inexperienced firm First, we make a technical assumption so that the inexperienced firms’
problem is well-defined: we assume that the distribution of ψ is such that EψVe(θ̃;ψ) satisfies a
polynomial growth condition.51 Let t denote the (random) time at which a firm becomes expe-
rienced. Given that this event occurs with intensity λ only if the firm exports, the probability
density function (p.d.f) of t depends on the export policy. At time t = 0, this density is given by
λyi(θ̃t)e−

∫ t
0 λyi(θ̃s)ds, where the exponent term captures the probability that the shock did not take

place until t and λyi(θ̃t) is the instantaneous arrival rate. Then, the inexperienced firm’s problem
can be written as

Vi(θ̃0) = sup
{yi(θ̃t)}∞

t=0

E
∫ ∞

0

[∫ t

0
e−ruF

(
θ̃u − 1

)
yi(θ̃u)du+ e−rtEVe(θ̃t;ψ)

]
λyi(θ̃t)e−

∫ t
0 λyi(θ̃s)dsdt

(A.1)
subject to (1) with θ̃0 given. Fixing a time t at which the firm receives the shock, the term in
square brackets in (A.1) captures the expected discounted profits, which consist of the discounted
stream of net profit flows F

(
θ̃u − 1

)
du accumulated during export periods up to t and the dis-

counted expected value of being an experienced firm. Note that by exporting the firm may become
experienced sooner, which is always desirable because it implies a higher profit flow on average.

51We say that f : [0,∞) → satisfies a polynomial growth condition if there exist M > 0 and ν > 0 such that
|f (θ)| ≤ M (1 + θν). Since θ̃ is a GBM, it is easy to see that Ve is a power function. Thus, when ψ is Pareto, this is
akin to a lower bound on α to guarantee that the expectation is finite.
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Manipulating (A.1), we can rewrite the inexperienced firm’s problem as52

Vi(θ̃0) = sup
{yi(θ̃t)}∞

t=0

E
∫ ∞

0
e−rt−λ

∫ t
0 yi(θ̃s)ds

{
F
(
θ̃t − 1

)
+ λEψVe(θ̃t)

}
yi(θ̃t)dt (A.2)

subject to (1) and θ̃0 given. Consider a firm that follows any constant policy yi ∈ {0, 1} during an
interval of time [t, t+ τ ]. Exploiting the stationarity of problem (A.2) we can write it recursively as

Vi(θ̃t) = max
yi∈{0,1}

E
(∫ τ

0
e−(r+λyi)s

{
F
(
θ̃t+s − 1

)
+ λEψVe(θ̃t+s;ψ)

}
yids+ e−(r+λyi)τVi(θ̃t+τ )

)
.

(A.3)
Taking the limit τ → 0 and rearranging yields (3).

D.2 Proof of Proposition 1

We prove the result under the general conditions on the profit function π(·), the law of motion of
profitability, θt, and distribution ψ stated below:

Assumption 1. Eψπe(ψ, θ) ≥ πi (θ) ∀θπe is continuous, πi belongs to C2 and both are weakly
increasing in θ∀ψ. ψ and θ are independent.

Assumption 2. Let h ≡ λEψ (max {πe (θ;ψ) , 0}) − limdt→0
{
E(e−rdtπi(θt+dt)) − πi(θt)

}
. If λ > 0,

h (θ) is weakly increasing in θ. Furthermore, E
[∫∞

0 e−rth(θt)dθt|θ0
]

satisfies a polynomial growth
condition.53

Assumption 3. There exists θ̄ such that ∀θ > θ̄, flow profits are positive even for inexperienced
firms, πi(θ) ≥ 0.

Assumption 4. The profitability process {θt}∞
t=0 is assumed to follow a diffusion,

dθt = µθdt+ σθdZt (A.4)

where Zt is a standard brownian motion. We assume µθ and σθ are continuous functions of θ that
satisfy Lipschitz and growth conditions on µ and σ.54 Furthermore, if θ′′ > θ′, then F (θ|θ′′) ≿FOSD

F (θ|θ′).

52Distribute the term λyi(θ̃t)e
−λ
∫ t

0
yi(θ̃s)ds inside the parenthesis and note that∫∞

0

∫ t
0 e

−ru−λ
∫ t

0
yi(θ̃s)ds

λyi(θ̃t)F
(
θ̃u − 1

)
yi(θ̃u)dudt =

∫∞
0

∫∞
s
e

−ru−λ
∫ t

0
yi(θ̃s)ds

λyi(θ̃t)dtF
(
θ̃u − 1

)
yi(θ̃u)du =∫∞

0 e
−ru−λ

∫ u

0
yi(θ̃s)ds

F
(
θ̃u − 1

)
yi(θ̃u)du.

53We say that f : [0,∞) → R satisfies a polynomial growth condition if there exist M > 0 and ν > 0 such that
|f (θ)| ≤ M (1 + θν).

54We say that µ satisfies a Lipschitz condition if there exists k > 0 such that∣∣µ (θ) − µ
(
θ′)∣∣ ≤ k

∣∣θ − θ′∣∣ .
This ensures the existence of a strong solution to (A.4).

54



Assumption 5. EψVe satisfies a polynomial growth condition ∀θ.

Assumption 1 is satisfied in the model in the text because E (ψ) ≥ 1. Applying Ito’s Lemma to
Assumption 2 we get

h ≡ λEψπe (θ;ψ) + rπi (θ) − µθ
dπi (θ)
dθ

− 1
2σ

2
θ

d2πi
dθ2

In the model in the text,

h ≡ Eψ
[
max

{
ψθ̃ − 1, 0

}]
+ r

λ

(
θ̃ − 1

)
− θ̃

λ

(
µ+ 1

2σ
2
)

which is clearly increasing in θ̃ (recall r > µ + 1
2σ

2 > 0). Furthermore, Assumption 3 is satisfied
by taking θ̄ = F

κ and Assumption 4 is satisfied by the GBM assumption (µθ = (µ + 1
2σ

2)θ and
σθ = σθ). Finally, when ψ is distributed Pareto, one can show that

EψVe(θ̃) = F


2

(α−1)(β1−α)(α−β2)σ2 θ̃
α − Ae1α

β1−α θ̃
β1 if θ̃ < 1

αAe2
α−β2

θ̃β2 + α
(r−µ′)(α−1) θ̃ − 1

r if θ̃ ≥ 1
,

for some constants Ae1 and Ae2. This expression satisfies a polynomial growth condition, i.e.
Assumption 5 is satisfied.

First, we prove the following result,

Lemma 1. Exporting is optimal for an inexperienced firm when θ > θ̄.

Proof. Exporting while θ > θ̄ yields flow profits πi (θ) ≥ 0 in [θ̄,+∞) if the firm remains inexpe-
rienced and introduces the possibility of becoming experienced, which, by assumption 1, increases
expected profits. Hence, exporting is optimal in this region.

Define πEE (θ) ≡ Eψ (max {πe (θ, ψ) , 0}). Note that the flow benefits of exporting (W ) are given
by

W = πi + λ (EψVe − Vi) .

Since yi is piecewise continuous, Vi is continuous. Given that πi and Ve are continuous, this implies
W is continuous. Assuming an indifferent firm exports, a firm will export iff W ≥ 0. By Assumption
1 and the possibility of inaction, we know that 0 ≤ Vi (θ) ≤ Ve (θ) < ∞ ∀θ. Moreover, since W is
continuous and πe and πi are continuous, by the Feynman-Kac Theorem we know that Vi, Ve ∈ C2

and, thus, W ∈ C2. Hence, Ve and Vi satisfy the following Hamilton-Jacobi-Bellman equations,

rEψVe = πEE + µθ
dEψVe
dθ

+ 1
2σ

2
θ

d2EψVe
dθ2 ∀θ (A.5)
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(r + λ)Vi = πi + λEψVe + µθ
dVi
dθ

+ 1
2σ

2
θ

d2Vi
dθ2 when W (θ) ≥ 0 (A.6)

rVi = µθ
dVi
dθ

+ 1
2σ

2
θ

dVi
dθ

when W (θ) < 0 (A.7)

Next, subtract (A.6) and (A.7) from (A.5) to obtain,

(r + λ) (EψVe − Vi) = πEE − πi + µθ

(
dEψVe
dθ

− dVi
dθ

)
+ σ2

θ

2

(
d2EψVe
dθ2 − d2Vi

dθ2

)
when W (θ) ≥ 0(A.8)

r (EψVe − Vi) = πEE + µθ

(
dEψVe
dθ

− dVi
dθ

)
+ σ2

θ

2

(
d2EψVe
dθ2 − d2Vi

dθ2

)
when W (θ) < 0(A.9)

Rewrite (A.8) and (A.9) in terms of W to obtain

(
r + λ

λ

)
(W − πi) = πEE − πi + µθ

λ

(
dW

dθ
− dπi
dθ

)
+ 1

2
σ2
θ

λ

(
d2W

dθ2 − d2πi
dθ2

)
when W (θ) ≥ 0

(
r

λ

)
(W − πi) = πEE + µθ

λ

(
dW

dθ
− dπi
dθ

)
+ 1

2
σ2
θ

λ

(
d2W

dθ2 − d2πi
dθ2

)
when W (θ) < 0

where we used the fact that πi ∈ C2. Rearranging,
(

1 + r

λ

)
W = πEE + r

λ
πi − µθ

λ

dπi
dθ

− 1
2
σ2
θ

λ

d2πi
dθ2 + µθ

λ

dW

dθ
+ 1

2
σ2
θ

λ

d2W

dθ2 when W (θ) ≥ 0(
1 + r

λ

)
W = W + πEE + r

λ
πi − µθ

λ

dπi
dθ

− 1
2
σ2
θ

λ

d2πi
dθ2 + µθ

λ

dW

dθ
+ 1

2
σ2
θ

λ

d2W

dθ2 when W (θ) < 0.

Define h ≡ πEE+ r
λπi−

µθ
λ
dπI

dθ − 1
2
σ2
θ
λ
d2πi
dθ2 , which is exactly Assumption 2 after applying Ito’s Lemma.

We can rewrite this as (
1 + r

λ

)
W = W1W<0 + h+ µθ

λ

dW

dθ
+ 1

2
σ2
θ

λ

d2W

dθ2 . (A.10)

By assumptions 2 and 5, we know thatW and h satisfy a polynomial growth condition. Furthermore,
we know that W is continuous. Hence, by Feynman-Kac theorem (Duffie, Appendix E, p.344), the
unique solution that satisfies a polynomial growth condition to (A.10) is given by

W (θ0) = E
(∫ ∞

0
e−(1+ r

λ)t {W (θt) 1W (θt)<0 + h (θt)
}
dθt|θ0

)
. (A.11)

We still need to show such a solution exists. We do this next.

Lemma 2. There is a unique continuous solution W to the functional equation (A.11).

Proof. By Lemma 1, the solution satisfies W (θ) ≥ 0 for θt > θ̄. Since only W (θ) < 0 appears on
the RHS of the functional equation (A.11), we can focus our attention on the set [0, θ̄]. Define the
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operator T : C (X) → C (X) as the RHS on (A.11) restricted to
[
0, θ̄
]
, where C is the space of

continuous and bounded functions. Note that T is well-defined in the sense that if f ∈ C, Tf ∈ C.
Next, we show that T satisfies monotonicity and discounting:
(i) Monotonicity. Take f ≥ g. Then,

Tf(θ0) = E[
∫ ∞

0
e−(1+ r

λ
){f(θt)1f(θt)<0∩θt<θ̄ + h(θt)}dθt|θ0]

≥ E[
∫ ∞

0
e−(1+ r

λ
){g(θt)1f(θt)<0∩θt<θ̄ + h(θt)}dθt|θ0]

≥ E[
∫ ∞

0
e−(1+ r

λ
){g(θt)1g(θt)<0∩θt<θ̄ + h(θt)}dθt|θ0] = Tg(θ0).

The first step uses f ≥ g, while the second step uses the fact that if f (z) < 0 ⇒ g (z) < 0 so
g (z) 1g(z)<0 = g (z) 1f(z)<0 + g (z) 1f(z)≥0∩g(z)<0 ≤ g (z) 1f(z)<0.
(ii) Discounting. Take a > 0. Then,

T (f(θ0) + a) = E[
∫ ∞

0
e−(1+ r

λ
){(f(θt) + a)1f(θt)+a<0∩θt<θ̄ + h(θt)}dθt|θ0]

= E[
∫ ∞

0
e−(1+ r

λ
){(f(θt) + a)1f(θt)<0∩θt<θ̄ + h(θt) − (f(θt) + a)1−a≤f(θt)<0∩θt<θ̄}dθt|θ0]

≤ Tf(θ0) + aE[
∫ ∞

0
e−(1+ r

λ
)1f(θt)<0∩θt<θ̄dθt|θ0]

≤ Tf(θ0) + a

1 + r
λ

.

Since r > 0 by Assumption 5, the result follows. Thus, by Blackwell’s theorem T : C (X) → C (X)
is a contraction. Since W[0,θ̄] ∈ C (X), by the contraction mapping theorem, there exists a unique
continuous W : [0, θ̄] → that solves (A.11). Given this, W (θ) for θ > θ̄ is uniquely defined from
(A.11).

Lemma 3. W is weakly increasing.

Proof. Take some weakly increasing function f and apply T for θ ∈ [0, θ̄],

Tf (θ) = E
(∫ ∞

0
e−(1+ r

λ) {f (θt) 1f(θt)<0∩θt<θ̄ + h (θt)
}
dθt|θ0

)
.

Since f (z) 1f(z)<0∩θ<θ̄ + h (z) is weakly increasing and θ has the FOSD property, Tf is also weakly
increasing. Since the space of bounded, continuous and weakly increasing functions is complete, W
is also weakly increasing in

[
0, θ̄
]
. This result, together with h(z) being weakly increasing and θ

having the FOSD property, imply that W is also weakly increasing for θ ≥ θ̄.

Now we are ready to prove the main result,

Proposition. The unique piecewise continuous optimal strategy features a threshold θ∗ such that
for θ < θ∗ not exporting is optimal while for θ ≥ θ∗ exporting is optimal.
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Proof. Suppose W (0) > 0. Then, since W is weakly increasing, exporting is optimal ∀θ, i.e. θ∗ = 0.
Suppose W (0) < 0. Since W is continuous, weakly increasing and satisfies W (θ̄) > 0, there exists
θ∗ such that not exporting is optimal ∀θ < θ∗ (W (θ) < 0), W (θ∗) = 0, and exporting is optimal
∀θ > θ∗ (W (θ) ≥ 0).

Finally, note that in the particular case discussed in the paper, θ̄ = F
κ and, as long as α < ∞,

EψVe(Fκ ;ψ) − Vi(Fκ ) > 0. It follows that θ∗ < F
κ or, equivalently, θ̃∗ < 1.

D.3 Derivation of the threshold equation (5)

In the GBM case, the HJB equations become

rEψVe = πEE (θt) + (µ+ 1
2σ)dEψVe

dθ
+ 1

2σ
2d

2EψVe
dθ2 (A.12)

for the experienced firm and

(r + λ)Vi = πi + λEψVe + (µ+ 1
2σ)dVi

dθ
+ 1

2σ
2d

2Vi
dθ2 when θ > θ∗ (A.13)

rVi = (µ+ 1
2σ)dVi

dθ
+ 1

2σ
2dVi
dθ

when θ < θ∗ (A.14)

for the inexperienced firm. Define ∆V ≡ Eψ (Ve) − Vi. Subtracting (A.13) and (A.14) from (A.12)
yields

(r + λ) ∆V = πEE (θ) − πi + (µ+ 1
2σ)d∆V

dθ
+ 1

2σ
2d

2∆V
dθ

when θ > θ∗ (A.15)

r∆V = πEE (θ) + (µ+ 1
2σ)d∆V

dθ
+ 1

2σ
2d

2∆V
dθ

when θ < θ∗ (A.16)

When θ > θ∗, the solution to (A.15) is given by55

∆V (θ) = 1
J̃

[∫ ∞

θ

(
θ

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

+
∫ θ

θ∗

(
θ

z

)β̃2 (
πEE (z) − πi (z)

) dz
z

]
+ C1Uθ

β̃1 + C2Uθ
β̃2

where

J̃ =
√
µ2 + 2 (r + λ)σ2 ≥ |µ|

β̃1 = −µ+ J̃

σ2 > 1

β̃2 = −µ− J̃

σ2 < 0

55See formula 5.24. in Stokey (2008).
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and C1U and C2U are unknown constants. Using the transversality condition, C1U = 0.

Note the derivative wrt θ is

d∆V
dθ

= 1
θ


β̃1

1
J̃

∫∞
θ

(
θ
z

)β̃1 (
πEE (z) − πi (z)

)
dz
z

+β̃2
1
J̃

∫ θ
θ∗

(
θ
z

)β̃2 (
πEE (z) − πi (z)

)
dz
z

+β̃2C2Uθ
β̃2


When θ < θ∗, the solution to (A.16) is given by

∆V (θ) = 1
J

[∫ θ∗

θ

(
θ

z

)β1

πEE (z) dz
z

+
∫ θ

0

(
θ

z

)β2

πEE (z) dz
z

]
+ C1Dθ

β1 + C2Dθ
β2

J =
√
µ2 + 2rσ2 ≥ |µ|

β1 = −µ+ J

σ2 > 1

β2 = −µ− J

σ2 < 0

and C1D and C2D are unknown constants. Using the initial condition ∆V (0) = 0, C2D = 0.

Note the derivative wrt θ

d∆V
dθ

= 1
J

1
θ


β1
∫ θ∗

θ

(
θ
z

)β1
πEE (z) dzz

+β2
∫ θ

0

(
θ
z

)β2
πEE (z) dzz

+β1C1Dθ
β1


We have three unknowns, C1D, C2U and θ∗ . Using the fact that ∆V is C1 at θ∗,

1
J̃

[∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

]
+ C2Uθ

∗β̃2 = 1
J

[∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z

]
+C1Dθ

∗β1

1
J̃

[
β̃1

∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

]
+ β̃2C2Uθ

∗β̃2 = 1
J

[
β2

∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z

]
+β1C1Dθ

∗β1 .

Next, multiply the first equation by β1 and subtract the second equation to obtain,(
β1 − β̃1

J̃

)∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

+
(
β1 − β̃2

)
C2Uθ

∗β̃2 =
(
β1 − β2
J

)∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z
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Rearranging,

C2U = θ∗−β̃2

β1 − β̃2

{(
β1 − β2
J

)∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z

+ (A.17)

(
β̃1 − β1

J̃

)∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

}

Since πEE − πi ≥ 0 and β̃1 ≥ β1, it follows that C2U ≥ 0. Next, multiply the first equation by β̃2

and subtract the second equation to obtain,(
β̃2 − β̃1

J̃

)∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

=
(
β̃2 − β2
J

)∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z

+
(
β̃2 − β1

)
C1Dθ

β1

Rearranging,

C1D = θ∗−β1

β1 − β̃2

{(
β̃1 − β̃2

J̃

)∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

(A.18)

+
(
β̃2 − β2
J

)∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z

}

The remaining equation is the fact that, by continuity, at the threshold the firm is indifferent
between exporting and not exporting, i.e. πi (θ∗) + λ∆V (θ∗) = 0,

πi (θ∗) + 1
J̃
λ

[∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

+ C2Uθ
∗β̃2

]
= 0

Substituting in (A.17),

πi (θ∗) + λ

 1
J̃

∫∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

)
dz
z +

(
1
J

) (
β1−β2
β1−β̃2

) ∫ θ∗

0

(
θ∗

z

)β2
πEE (z) dzz

+
(

1
J̃

) (
β̃1−β1
β1−β̃2

) ∫∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

)
dz
z

 = 0

Simplifying,

πi (θ∗) + λ

β1 − β̃2


(
β̃1 − β̃2

)
1
J̃

∫∞
θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

)
dz
z

+ 1
J (β1 − β2)

∫ θ∗

0

(
θ∗

z

)β2
πEE (z) dzz

 = 0. (A.19)
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Next, note

β1 − β2 = 2J
σ2

β̃1 − β̃2 = 2J̃
σ2

β1 − β̃2 = J + J̃

σ2

Thus,

πi (θ∗) + λ

( 2
J + J̃

)[∫ ∞

θ∗

(
θ∗

z

)β̃1 (
πEE (z) − πi (z)

) dz
z

+
∫ θ∗

0

(
θ∗

z

)β2

πEE (z) dz
z

]
= 0.

As suggested in the main body, this equation shows that the model boils down to one equation in
one unknown even if ψ is not multiplicative. In our baseline model, πEE = Eψ

[
max

{
ψ κθ
F − 1, 0

}]
and πi = κθ − F . Replacing,

κθ − F + λ

( 2
J + J̃

){∫ ∞

θ∗

(
θ∗

z

)β̃1

(Eψ (max {ψκz − F, 0}) − (κz − 1)) dz
z

+
∫ θ∗

0

(
θ∗

z

)β2

Eψ (max {ψκz − F, 0}) dz
z

}
= 0.

In terms of θ̃ and redefining z = κz
F :

θ̃ − 1 + λ

( 2
J + J̃

){∫ ∞

θ̃∗

(
θ̃∗

z

)β̃1

(Eψ (max {ψz − 1, 0}) − (z − 1)) dz
z

+
∫ θ̃∗

0

(
θ̃∗

z

)β2

Eψ (max {ψz − 1, 0}) dz
z

}
= 0.

D.4 Proof of Proposition 3

First, let us compute Eψ(max{ψz − 1, 0}). When z > ψ−1
m ,

Eψ(max(ψz − 1, 0) = ( α

α− 1)ψmz − 1, (A.20)

which is decreasing in α. When z < ψ−1
m ,

Eψ(max(ψz − 1, 0) = ( 1
α− 1)ψαmzα, (A.21)

which is decreasing in α since ln (ψαmzα) < 0 in this region. Thus, Eψ max{ψz−1, 0} decreases with
α ∀z and, thus, the LHS of equation (5) decreases with α.
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Next, define m = z
θ̃∗ and rewrite equation (5) as

θ̃∗ − 1 + λ

( 2
J + J̃

) ∫∞
1 m−β̃1

(
Eψ

(
max

(
ψθ̃∗m− 1, 0

))
−
(
θ̃m− 1

))
dm
m

+
∫ 1

0 m
−β2Eψ

(
max

(
ψθ̃∗m− 1, 0

))
dm
m

 = 0 (A.22)

Solving the second integral in the first line of the bracket,

θ̃∗
(
1 − 2λ

(J + J̃)(β̃1 − 1)

)
−
(
1 − 2λ

(J + J̃)β̃1

)

+λ
( 2
J + J̃

) ∫∞
1 m−β̃1Eψ

(
max

(
ψθ̃∗m− 1, 0

))
)dmm

+
∫ 1

0 m
−β2Eψ

(
max

(
ψθ̃∗m− 1, 0

))
dm
m

 = 0

Since 1 − λ 2
J+J̃

1
β̃−1 ≥ 0, the LHS decreases with θ̃∗. Thus, by the implicit function theorem, θ̃∗

increases with α.

D.5 Proof of Proposition 4

Define θ̂ = ψmθ̃ and ψ̃ = ψ
ψm

and rewrite equation (5),

1
ψm

θ̂ − 1 + λ

( 2
J + J̃

)
∫ :∞

1
ψm

θ̂∗

(
θ̂∗

ψmz

)β̃1 (
Emax

{
ψmψ̃z − 1

}
− (z − 1)

)
dz
z

+
∫ 1
ψm

θ̂∗

0

(
θ̂∗

ψmz

)β2
Emax

{
ψmψ̃z − 1

}
dz
z

 = 0

Let ẑ ≡ ψmz. Then,

1
ψm

θ̂ − 1

+λ
( 2
J + J̃

) ∫ :∞
θ̂∗

(
θ̂∗

ẑ

)β̃1 (
Emax

{
ψ̃ẑ − 1, 0

}
− 1

ψm
ẑ + 1

)
dẑ
ẑ

+
∫ θ̂∗

0

(
θ̂∗

ẑ

)β2
Emax

{
ψ̃ẑ − 1

}
dẑ
ẑ

 = 0

1
ψm

θ̂ − λ

( 2
J + J̃

)∫ :∞

θ̂∗

(
θ̂∗

ẑ

)β̃1

dẑ

− 1

+λ
( 2
J + J̃

) ∫ :∞
θ̂∗

(
θ̂∗

ẑ

)β̃1 (
Emax

{
ψ̃ẑ − 1, 0

}
+ 1

)
dẑ
ẑ

+
∫ θ̂∗

0

(
θ̂∗

ẑ

)β2
Emax

{
ψ̃ẑ − 1

}
dẑ
ẑ

 = 0

1
ψm

θ̂

(
1 − λ

2
J + J̃

1
β̃1 − 1

)
− 1

+λ
( 2
J + J̃

) ∫ :∞
θ̂∗

(
θ̂∗

ẑ

)β̃1 (
Emax

{
ψ̃ẑ − 1, 0

}
+ 1

)
dẑ
ẑ

+
∫ θ̂∗

0

(
θ̂∗

ẑ

)β2
Emax

{
ψ̃ẑ − 1

}
dẑ
ẑ

 = 0

Since 1 − λ 2
J+J̃

1
β̃−1 ≥ 0, the LHS decreases with ψm.
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Changing the dummy of integration to m = z
θ̂∗ ,

1
ψm

θ̂

(
1 − λ

2
J + J̃

1
β̃1 − 1

)
− 1 + λ

( 2
J + J̃

) ∫ :∞
1 m−β̃1

(
Emax

{
ψ̃mθ̂∗ − 1, 0

}
+ 1

)
dm
m

+
∫ 1

0 m
−β2Emax

{
ψ̃mθ̂∗ − 1

}
dm
m

 = 0

The first derivative wrt θ̂∗ yields

1
ψm

(
1 − λ

2
J + J̃

1
β̃1 − 1

)
+ λ

( 2
J + J̃

) ∫∞
1 m−β̃1+1 dE[max{ψmθ̃∗−1}]

dmθ̃∗
dm
m

+
∫ 1

0 m
−β2+1 dE[max{ψmθ̃∗−1}]

dmθ̃∗
dm
m

 > 0.

Hence, the LHS increases with θ̂∗. Thus, by the implicit function theorem, dθ̂∗

dψm
> 0.
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E Estimation details

E.1 SMM estimator

The firms in our sample that are used for estimation may enter a market j twice: once as first-time
entrants and once as re-entrants. For each entry, we let yijτr ∈ {0, 1} denote the export participation
decision τ years after entry of firm i, with the subindex r denoting whether it is a first-time entrant
(r = 0) or a re-entrant (r = 1). Recall that years are redefined according to the time of the first
shipment to avoid partial-year effects.

Our SMM estimator uses ten moments. The first five moments are survival probabilities of
first-time entrants:

1
N

N∑
i=1

{ 1
Ji

Ji∑
j=1

{yobsijτ0 − 1
S

S∑
s=1

ysijτ0(φ)}
}

= 0 for τ = 1, . . . , 5. (A.23)

where φ = {µ, σ, λ, α} is the vector of model parameters, yobsijτ0 denotes the observed export-
participation decision, ysijτ0(φ) is the analogous model-implied export participation decision, N
is the number of firms that are first-time entrants at least in one market, Ji the number of such
entry markets for firm i, and S is the number of model simulations.

The last five moments are survival probabilities of re-entrants,

1
N

N∑
i=1

{ 1
Ji

Ji∑
j=1

{ ∑
r=0,1

(
yobsijτr − 1

S

S∑
s=1

ysijτr(θ, zij)
)
1r=1

}}
= 0 for τ = 1, . . . , 5. (A.24)

where 1r=1 is an indicator function for the event r = 1, so that only re-entrant observations
contribute to these moments and zij is the amount of time that passed between the date of the first
entry and the date of the first re-entry. Unlike first-time entrants, who all enter as inexperienced
firms (equation 8), re-entrants may enter experienced or inexperienced (equation 9). The probability
of being each type of re-entrant depends on the age of the exporter: if a firm spent a long time active
in the market, then the likelihood of being experienced when it re-enters it increases. Importantly,
the share of experienced re-entrants affects the expected re-entry survival rate. Given that the
sample covers the period 1997-2008 and that we only consider re-entrants who we also observe as
first-time entrants, the latest year in which the firm could re-enter is year 6 in the export experience
(the firm should have exited and then re-entered again with five years left to study survival). The
latest possible re-entrant with five years to study survival is a firm that enters on January 1st 1997,
exits in 2001, and re-enters on December 31st 2002 (year 6). 56 In other words, our sample is biased
towards young, inexperienced re-entrants. To capture this effect, we write our re-entry survival
moment as the expected survival rate for re-entrants conditional on the firm-market specific “age”
zij and then sum over the observed zij . We define zij in years for computational tractability. More

56We could also include firms that, having entered on January 1st 1997, exited in 2002 and re-entered on January
1st 2003, but we do not see such a firm in our sample.
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precisely, we create three groups: firms with a re-entry shipment between 2 and 3 years after the
first-entry shipment, between 3 and 4 years, and more than 4 years later (up to year 6).

Let mk(φ), with k = 1, . . . , 10, denote the ten moments above and m(φ) a vector with these ten
moments. Our SMM estimator chooses φ to minimize m(φ)′Wm(φ). Since all our moments are
survival probabilities, we choose an identity matrix as the weighting matrix W .

Furthermore, given that the objective function is non-smooth, we took a three-step approach.
First, we fixed µ and estimated the remaining parameters: µ was fixed alternatively at 0, −0.025,
−0.05, −0.075, −0.1, −0.15 and −0.2. The model performance clearly decreased for values larger
than −0.1. Thus, in a second step, we estimated the model using the genetic algorithm ga in
MATLAB with a population size of 1000 within a narrower set of parameters guided by the best
points in the previous grid (µ between 0 and −0.1). Finally, we refined the solution with a local
optimizer, fminsearch.

E.2 Simulation details

Our goal is to simulate equations (8) and (9). Thus, there are three objects that we need to simulate:
(i) the survival rate of an inexperienced firm, (ii) the survival rate of an experienced firm, and (iii)
the probability of being an experienced re-entrant for each of the three possible values of zij . We
simulate S = 200, 000 firms for T = 6 years with a time interval of dt = 0.001.57 Since all firms
and markets are identical (except for κ and F , but those are irrelevant for survival, see Proposition
2), we use the same simulations for all firm-markets. Since the interval is of size dt, there are 1/dt
“instants” per year. In the data, we define firm-market-specific years according to the time of first
entry. Accordingly, in the model, instants between τ/dt+ 1 and (τ + 1)/dt correspond to year τ of
the firm’s export experience (letting 0 denote the entry year). In each simulation, there is a random
draw for the GBM process, i.e. T/dt = 6000 random draws of dZt - one per instant, a random
draw for whether the firm becomes experienced in each instant if it decides to export - also one per
instant so 6000 additional draws, and a random draw of ψ.

Consider first the survival rate of inexperienced firms. Since the GBM is continuous, firms enter
exactly at the threshold, θ̃0 = θ̃∗. Using this result and the random draws of the GBM, we construct
the path for θ̃t. Whenever θ̃t ≥ θ̃∗, we check whether the firm becomes experienced according to
the corresponding random draw. If so, we modify the firm’s (normalized) operating profits from the
next instant onwards from θ̃t to ψθ̃t. While inexperienced, the firm is active in any given instant
if θ̃t ≥ θ̃∗. Once it becomes experienced, which is an absorbing state, it is only active if ψθ̃t ≥ 1.
If the firm is active in any instant t ∈ [τ/dt+ 1, (τ + 1)/dt], then the firm is active in year τ . The
firm is always active by definition in the first year (τ = 0). The subsequent five years τ = 1, . . . , 5
are used to construct the required survival probabilities of inexperienced firms, which are also the
survival probabilities of first-time entrants (the first five moments).

Next, we compute the survival rate of experienced firms. These firms also enter exactly at their
57In Section G, we need to simulate more years since firms do not enter exactly at the threshold.
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relevant threshold, i.e. ψθ̃0 = 1. Since entry and exit thresholds coincide for experienced firms, and
the GBM is memoryless, we do not need to keep track of ψ to compute this survival rate. That is,
we start the process at any value, e.g. θ̃ = 1, we construct the path for θ̃t using the random draws
of the GBM, and then we check in every instant whether the process is above the initial value, e.g.
whether θ̃t ≥ 1. If the firm is active in any instant t ∈ [τ/dt+ 1, (τ + 1)/dt], then the firm is active
in year τ . The fact that the GBM is memoryless implies that this computation is independent of
the chosen value to start the process (e.g. θ̃0 = 1).

Finally, we need to compute the share of firms that enter experienced vs. inexperienced for
each of the zij values. To do so, for each of the S = 200, 000 firms that we simulate starting as
inexperienced firms, we check whether they become re-entrants (only for the first time, as in the
data).58 If so, we keep track of their experience status at the moment of re-entry, we check the
date of the first shipment as a re-entrant and using this we compute the amount of time that has
passed since the first shipment of the first entry. Using this, we classify the re-entry into one of the
three possible values of zij . Then, we compute the share of the firms in each category of zij that
are experienced. Armed with the three pieces, we can calculate the predicted re-entry probability
for each zij using equation (9).

58Note that since the maximum value of zij is year 6, we do not need to simulate extra years.
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F Alternative estimation

In this appendix, we re-estimate the model by including the four conditional survival moments of
Table 4 (Panel A, last columns) in the set of moments to match (in addition to the ten moments of
the baseline estimation). Table F.1 shows the results. The model does an excellent job at matching
continuous conditional survival probabilities and even improves the fit to the first-time entrant
survival profile (fact 1). By contrast, the fit for re-entrants worsens, but it is still very good: the
average discrepancy is 2.7 percentage points instead of 1.3. The model overestimates the first-year
re-entrant survival rate by more and predicts a profile that is too steep. To understand why, note
that this alternative estimation strategy delivers faster learning (i.e. higher λ̂). This implies that a
larger share of re-entrants are experienced, which raises their survival rate (58% of re-entrants are
experienced vs 40% in the main estimation). Furthermore, to match better continuous conditional
survival probabilities, the estimation picks a more negative µ̂

σ̂ (−0.35). This makes the slope of the
survival profile steeper, especially for experienced firms and, thus, for re-entrants. Regarding the
other moments analyzed in Section 6, these new estimates neither substantially improve nor worsen
the model’s fit (results available upon request).
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Table F.1: SMM Estimation results: Alternative targets

Fixed parameters

r 0.1
ψm 1

Estimated parameters

µ -0.0569
σ 0.1622
λ 4.518
α 4.711

Survival probabilities

Panel A: Entrants

Model Data
Year 1 0.298 0.294
Year 2 0.235 0.242
Year 3 0.205 0.208
Year 4 0.185 0.185
Year 5 0.167 0.169

Panel B: Re-entrants

Year 1 0.467 0.406
Year 2 0.375 0.361
Year 3 0.320 0.334
Year 4 0.281 0.292
Year 5 0.245 0.285

Panel C: Conditional survival

Year 2 0.604 0.629
Year 3 0.734 0.718
Year 4 0.800 0.784
Year 5 0.826 0.825
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G A simple model with lumpy exports

Our continuous-time model has the advantage of facilitating time-aggregation corrections. However,
since re-entry is pervasive and many exporters spend significant time close to the threshold, one
may worry that (i) we may get in the model spurious entry and re-entry of firms that barely spent
any time above the threshold and, (ii), this may exaggerate the intra-period extensive margin by
including even very small intervals above the threshold for firms close to it. To address these
concerns, we develop an extension of our model that introduces discrete shipments. This extension
keeps all features of the original model except that firms can no longer export at every instant.
Instead, firms receive an “export opportunity” shock with intensity η > 0. If there is no shock, then
firms do not export and get zero instantaneous profits regardless of their potential profitability. If
there is a shock, then firms decide whether to export or not. If they do, they obtain a discrete
amount of export profits πi(θt) if inexperienced and πe(θt, ψ) if experienced:

πi(θt) = 1
η

{
κθt − F if export at t

0 otherwise

}

πe(θt;ψ) = 1
η

{
ψκθt − F if export at t

0 otherwise

}
.

We scale profits with η such that changing η does not change the average profits in a time period.
The HJB equation of an inexperienced firm is, then,

rV = η−1 (κθt − F ) + η−1λ(EVe − Vi)︸ ︷︷ ︸
profits conditional on exporting

ηdt︸︷︷︸
probability of exporting

+ (µ+ 1
2σ

2)θdV
1

dθ
+ 1

2σ
2θ
d2V 1

dθ2 forκθ > F

rV = (µ+ 1
2σ

2)θdV
dθ

+ 1
2σ

2θ
d2V

dθ2 for κθ < F.

An analogous equation holds for the experienced firm. Since firms are risk neutral, η does not affect
any value functions, hence, nor the threshold. However, it will affect the time of entry (it will now
be above θ∗). It will also affect survival predictions: firms may not only exit because they are bad
but also because they did not get lucky with the export opportunity shock. This matters more for
firms close to the threshold. For reasonable values of η, firms that spend the entire period above
the threshold are extremely likely to export.

G.1 Moments with η < ∞

Next, we compare the model predictions for different values of η. Note that a lower η tends to
decrease survival probabilities: firms not only need to be above the threshold but also be hit by
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the export-opportunity shock to survive.59 For this reason, we re-estimate the model for each value
of η. We consider η ∈ {0.005, 0.01, 0.025, 0.05}, implying that if firms are above the threshold for
an entire year, the expected number of shipments are 5, 10, 25, and 50, respectively. The average
number of shipments by first-time entrants is 12.5 in the data, but this presumably includes firms
that only spend a fraction of the time above the threshold. Conditioning on firms that survived
for five years and looking at their average number of shipments in year 3 of their export experience
yields 25.8 shipments.

Panels A and B in Table G.1 show the estimated values for {µ, σ, λ, α} and predicted survival
probabilities, respectively, for different values of η. Clearly, η is not identified by survival moments:
as we change η, the remaining parameters change to deliver the same survival probabilities. In
other words, adding lumpiness does not hurt or improve the model’s performance to match survival
moments.

As argued before, η is also very important for the intra-period extensive margin and the growth-
rates implications. For this reason, we replicate Table 5 at our preferred value: η = 0.025. The
model fit for shipments (panel B) is substantially improved. In particular, the standard deviation
is much closer to that in the data. As a result, however, the overall volatility of sales (panel A) is
now smaller than in the data, suggesting that other forces may increase the variance of small and
young firms, e.g. marketing costs (Arkolakis, 2016).

59There is a countervailing force: firms enter above the threshold and, therefore, are more likely to be above the
threshold in the future. We find this effect to be weaker in our simulations.
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Table G.1: SMM Estimation results

Fixed parameters

r 0.1 0.1 0.1 0.1
η 0.005 0.01 0.025 0.05

Estimated parameters

µ -0.014 -0.018 -0.014 -0.018
σ 0.052 0.085 0.052 0.075
λ 1.478 1.666 2.350 2.451
α 6.136 4.170 7.632 5.612

Survival probabilities

Panel A: Entrants

Model Data
Year 1 0.297 0.309 0.297 0.300 0.294
Year 2 0.228 0.225 0.222 0.220 0.243
Year 3 0.202 0.198 0.199 0.195 0.211
Year 4 0.188 0.186 0.185 0.182 0.189
Year 5 0.178 0.179 0.175 0.173 0.174

Panel B: Re-entrants

Model Data
Year 1 0.437 0.435 0.444 0.445 0.394
Year 2 0.363 0.362 0.363 0.366 0.351
Year 3 0.318 0.323 0.323 0.323 0.325
Year 4 0.291 0.294 0.294 0.293 0.282
Year 5 0.272 0.280 0.275 0.273 0.276
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Table G.2: Other moments: Growth rates. η = 0.025

A: Unconditional sales growth rates (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 -0.108 -0.228 -0.000 -0.178 1.126 1.732
Year 2 0.011 -0.008 0.006 0.030 0.929 1.532
Year 3 0.002 0.021 0.002 0.038 0.861 1.565
Year 4 -0.010 0.058 -0.003 0.075 0.827 1.501
Year 5 -0.012 0.105 -0.003 0.116 0.796 1.453

B: Unconditional shipment growth rates (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 -0.186 -0.189 -0.051 -0.077 1.091 0.990
Year 2 -0.012 -0.039 0 0 0.908 0.969
Year 3 -0.006 -0.024 0 0 0.845 0.952
Year 4 -0.001 -0.018 0 0 0.812 0.900
Year 5 -0.001 0.000 0 0 0.783 0.896

C: Sales growth rates conditional on surviving at least until year 5 (entry: year 0)

Mean Median Std. deviation
Horizon Model Data Model Data Model Data

Year 1 0.272 0.145 0.181 0.122 0.803 1.381
Year 2 0.146 0.216 0.059 0.201 0.687 1.315
Year 3 0.028 0.103 0.010 0.127 0.575 1.289
Year 4 -0.008 0.129 -0.006 0.117 0.547 1.186
Year 5 -0.092 0.016 -0.034 0.084 0.627 1.185
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H Sales by spell duration

In this section, we follow Fitzgerald et al. (2023) and present facts related to firm sales depending
on the duration of an export spell. More specifically, we take our first-time entrants and define a
dummy 1s that is equal to one if the firm’s export experience (i.e. without any exits in between) lasts
for exactly s ∈ {1, . . . , 5, 6} periods.60 Then, we run a regression of ln(salest) on these dummies,
with the one-year spells being the base group. Thus, each coefficient has the interpretation of how
much more a firm of spell s exports in horizon h relative to the sales of a firm that did not survive any
periods. We consider specifications adding destination-year, product, and firm-year fixed effects.

Table H.1: Log(sales)

(1) (2) (3)
Year 0, 1-year spell - - -

Year 0, 2-year spell 1.188∗∗∗ 1.083∗∗∗ 0.896∗∗∗

(0.05406) (0.04832) (0.05206)

Year 1, 2-year spell 0.600∗∗∗ 0.547∗∗∗ 0.414∗∗∗

(0.05206) (0.04815) (0.05190)

Year 0, 3-year spell 1.680∗∗∗ 1.627∗∗∗ 1.367∗∗∗

(0.07170) (0.06450) (0.06988)

Year 1, 3-year spell 1.421∗∗∗ 1.373∗∗∗ 1.194∗∗∗

(0.07403) (0.06803) (0.07445)

Year 2, 3-year spell 0.976∗∗∗ 0.942∗∗∗ 0.853∗∗∗

(0.07428) (0.07322) (0.07817)

Year 0, 4-year spell 1.946∗∗∗ 1.751∗∗∗ 1.414∗∗∗

(0.09558) (0.08409) (0.08410)

Year 1, 4-year spell 1.930∗∗∗ 1.783∗∗∗ 1.536∗∗∗

(0.09518) (0.08448) (0.08363)

Year 2, 4-year spell 1.901∗∗∗ 1.745∗∗∗ 1.577∗∗∗

(0.09770) (0.08716) (0.08845)

Year 3, 4-year spell 1.310∗∗∗ 1.169∗∗∗ 1.101∗∗∗

(0.09570) (0.09412) (0.09843)

Year 0, 5-year spell 1.948∗∗∗ 1.785∗∗∗ 1.471∗∗∗

(0.11755) (0.10294) (0.10702)

Year 1, 5-year spell 1.867∗∗∗ 1.738∗∗∗ 1.524∗∗∗

(0.12117) (0.11208) (0.11672)

Year 2, 5-year spell 2.089∗∗∗ 1.961∗∗∗ 1.839∗∗∗

(0.11423) (0.10447) (0.11039)

Year 3, 5-year spell 2.017∗∗∗ 1.904∗∗∗ 1.827∗∗∗

60Firms that survive 7 or more years are excluded from the regression. We also exclude right-censored export spells,
i.e. those where we cannot determine how many years they survived.
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(0.11448) (0.11040) (0.11329)

Year 4, 5-year spell 1.414∗∗∗ 1.282∗∗∗ 1.271∗∗∗

(0.11272) (0.12079) (0.12202)

Year 0, 6-year spell 2.494∗∗∗ 2.224∗∗∗ 1.983∗∗∗

(0.15069) (0.12596) (0.13582)

Year 1, 6-year spell 2.441∗∗∗ 2.270∗∗∗ 2.112∗∗∗

(0.14140) (0.11851) (0.12030)

Year 2, 6-year spell 2.485∗∗∗ 2.319∗∗∗ 2.239∗∗∗

(0.14839) (0.12866) (0.12675)

Year 3, 6-year spell 2.478∗∗∗ 2.327∗∗∗ 2.320∗∗∗

(0.14900) (0.14357) (0.14027)

Year 4, 6-year spell 2.471∗∗∗ 2.258∗∗∗ 2.362∗∗∗

(0.13792) (0.14126) (0.14007)

Year 5, 6-year spell 1.877∗∗∗ 1.683∗∗∗ 1.899∗∗∗

(0.13311) (0.15327) (0.16822)

Destination-year fixed effect No Yes Yes

Product fixed effect No Yes Yes

Firm-year fixed effect No No Yes
Observations 33675 33391 26986
R2 0.104 0.316 0.629

Table H.1 shows the results. Overall, we see that firms that survive longer sell more, but that
their sales are relatively flat over the life-cycle, except for the last year, where they sell substantially
less - likely an artifact of time-aggregation (i.e. during the last period, firms exit, so that year is
shorter). This result is robust across all specifications; only the levels of sales seem to be affected
by the fixed effects. Figure H.1 plots the results in the case with product and destination-year fixed
effects activated, as well as the model predictions under the assumptions of CES demand and equal
κ and F (which is required to compare sales levels across firms with different spell durations). As
argued in the main text, because of selection, the model predicts strong growth in the beginning,
which is counterfactual, and a large drop in the exit year due to a partial-year effect upon exit. The
former is not present in the data, suggesting that even profitable firms find it difficult to increase
sales, even after learning they are very profitable in that market.

Table H.2: Log(sales) (Annual data)

(1) (2) (3)
Year 0, 1-year spell

Year 0, 2-year spell 0.865∗∗∗ 0.804∗∗∗ 0.617∗∗∗

(0.04197) (0.03857) (0.04470)

Year 1, 2-year spell 0.840∗∗∗ 0.801∗∗∗ 0.641∗∗∗
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(0.04097) (0.03998) (0.04444)

Year 0, 3-year spell 1.212∗∗∗ 1.109∗∗∗ 0.934∗∗∗

(0.06014) (0.05507) (0.05781)

Year 1, 3-year spell 1.623∗∗∗ 1.531∗∗∗ 1.384∗∗∗

(0.06201) (0.05889) (0.05860)

Year 2, 3-year spell 1.109∗∗∗ 1.029∗∗∗ 0.888∗∗∗

(0.06276) (0.06377) (0.06447)

Year 0, 4-year spell 1.354∗∗∗ 1.274∗∗∗ 1.068∗∗∗

(0.08083) (0.07069) (0.07595)

Year 1, 4-year spell 1.898∗∗∗ 1.813∗∗∗ 1.647∗∗∗

(0.08365) (0.07605) (0.07939)

Year 2, 4-year spell 1.968∗∗∗ 1.904∗∗∗ 1.754∗∗∗

(0.08478) (0.07615) (0.08022)

Year 3, 4-year spell 1.396∗∗∗ 1.318∗∗∗ 1.176∗∗∗

(0.08654) (0.08369) (0.09075)

Year 0, 5-year spell 1.531∗∗∗ 1.400∗∗∗ 1.203∗∗∗

(0.08971) (0.08422) (0.08704)

Year 1, 5-year spell 2.234∗∗∗ 2.126∗∗∗ 1.958∗∗∗

(0.08785) (0.07815) (0.08324)

Year 2, 5-year spell 2.239∗∗∗ 2.137∗∗∗ 2.000∗∗∗

(0.10243) (0.09674) (0.10243)

Year 3, 5-year spell 2.230∗∗∗ 2.123∗∗∗ 1.985∗∗∗

(0.09875) (0.09764) (0.10185)

Year 4, 5-year spell 1.636∗∗∗ 1.549∗∗∗ 1.363∗∗∗

(0.09841) (0.10230) (0.11817)

Year 0, 6-year spell 1.934∗∗∗ 1.703∗∗∗ 1.539∗∗∗

(0.13314) (0.10588) (0.11511)

Year 1, 6-year spell 2.425∗∗∗ 2.246∗∗∗ 2.114∗∗∗

(0.12744) (0.10968) (0.11659)

Year 2, 6-year spell 2.569∗∗∗ 2.428∗∗∗ 2.297∗∗∗

(0.12062) (0.10763) (0.11301)

Year 3, 6-year spell 2.472∗∗∗ 2.306∗∗∗ 2.218∗∗∗

(0.12339) (0.11891) (0.11896)

Year 4, 6-year spell 2.341∗∗∗ 2.185∗∗∗ 2.112∗∗∗

(0.12505) (0.12319) (0.12106)

Year 5, 6-year spell 1.833∗∗∗ 1.704∗∗∗ 1.580∗∗∗

(0.13266) (0.12993) (0.14649)

Destination-year fixed effect No Yes Yes

Product fixed effect No Yes Yes

Firm-year fixed effect No No Yes
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Observations 42783 42476 35264
R2 0.099 0.299 0.615

We repeat the exercise with annual data based on calendar years, as in the original analysis
of Fitzgerald et al. (2023) (Table H.2). Figure H.2 shows that the fit looks better: now the data
also exhibits a hump, which is also a feature in our model. The difference between the results with
annual data and firm-specific years suggests that the partial-year effect entirely drives the hump.
As discussed before, our uniform-entry and pure continuous-time model seems to overcorrect for
this partial-year effect, leading to an exacerbated growth rate between the first two years of the
export experience.
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(a) Sales by export spell, model
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(b) Sales by export spell, data

Figure H.1: Sales by export spell, model vs. data

Notes: To construct the model predictions, we first classify first-time entrants according to the length of their export
spell, i.e. the number of firm-specific years of uninterrupted exports. We compute the mean log sales in each year of
their export experience, conditional on being a firm that survives for exactly x ∈ {1, 2, 3, 4, 5, 6} years. We then plot
these average sales in levels for firms that last for x = 2 (blue), x = 3 (cyan), x = 4 (green), x = 5 (orange) and x = 6
(red) divided by the average sales in levels of firms that do not export after the entry year.
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(a) Sales by export spell, model
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(b) Sales by export spell, data

Figure H.2: Sales by export spell, model vs. data. Annual data.

Notes: To construct the model predictions, we first classify first-time entrants according to the length of their export
spell, i.e. the number of calendar years of uninterrupted exports. We compute the mean log sales in each year of their
export experience, conditional on being a firm that survives for exactly x ∈ {1, 2, 3, 4, 5, 6} years. We then plot these
average sales in levels for firms that last for x = 2 (blue), x = 3 (cyan), x = 4 (green), x = 5 (orange) and x = 6 (red)
divided by the average sales in levels of firms that do not export after the entry year.

77


